×

Synchronization of quaternion-valued coupled systems with time-varying coupling via event-triggered impulsive control. (English) Zbl 1527.34090


MSC:

34D06 Synchronization of solutions to ordinary differential equations
34A37 Ordinary differential equations with impulses
Full Text: DOI

References:

[1] MinhosF, SousaR. Impulsive coupled systems with generalized jump conditions. Nonlinear Anal‐Model Control. 2018;23(1):103‐119. · Zbl 1420.34052
[2] YangX, LiC, SongQ, LiH, HuangJ. Effects of state‐dependent impulses on robust exponential stability of quaternion‐valued neural networks under parametric uncertainty. IEEE Trans Neural Netw Learn Syst. 2019;30(7):2197‐2211.
[3] TanakaG, AiharaK. Complex‐valued multistate associative memory with nonlinear multilevel functions for gray‐level image reconstruction. IEEE Trans Neural Netw. 2009;20(9):1463‐1473.
[4] MatsuiN, IsokawaT, KusamichiH, PeperF, NishimuraH. Quaternion neural network with geometrical operators. J Intell Fuzzy Syst. 2004;15(3-4):149‐164. · Zbl 1091.68573
[5] LiY, QinJ, LiB. Existence and global exponential stability of anti‐periodic solutions for delayed quaternion‐valued cellular neural networks with impulsive effects. Math Meth Appl Sci. 2019;42(1):5‐23. · Zbl 1440.92005
[6] LiY, FangY, QinJ. Anti‐periodic synchronization of quaternion‐valued generalized cellular neural networks with time‐varying delays and impulsive effects. Int J Control Autom Syst. 2019;17(5):1191‐1208.
[7] ZhuJ, SunJ. Stability of quaternion‐valued impulsive delay difference systems and its application to neural networks. Neurocomputing. 2018;284:63‐69.
[8] LiuY, LiW, FengJ. The stability of stochastic coupled systems with time‐varying coupling and general topology structure. IEEE Trans Neural Netw Learn Syst. 2018;29(9):4189‐4200.
[9] WangP, ZhangB, SuH. Stabilization of stochastic uncertain complex‐valued delayed networks via aperiodically intermittent nonlinear control. IEEE Trans Syst Man Cybern. 2019;49(3):649‐662.
[10] HolmeP. Network reachability of real‐world contact sequences. Phys Rev E. 2005;71(4):046119.
[11] LiT, ZhangJ. Consensus conditions of multi‐agent systems with time‐varying topologies and stochastic communication noises. IEEE Trans Autom Control. 2010;55(9):2043‐2057. · Zbl 1368.93548
[12] PengC, ZhouY, HuiQ. Distributed fault diagnosis of networked dynamical systems with time‐varying topology. J Frankl Inst‐Eng Appl Math. 2019;356(11):5754‐5780. · Zbl 1415.93027
[13] LiuY, LiuJ, LiW. Stabilization of highly nonlinear stochastic coupled systems via periodically intermittent control. IEEE Trans Autom Control. 1. https://doi.org/10.1109/TAC.2020.3036035 · Zbl 1536.93962 · doi:10.1109/TAC.2020.3036035
[14] DingK, ZhuQ. Reliable intermittent extended dissipative control for uncertain fuzzy flexible spacecraft systems with Bernoulli stochastic distribution. IET Contr Theory Appl. 2021;15(7):911‐925.
[15] XuY, GaoS, LiW. Exponential stability of fractional‐order complex multi‐links networks with aperiodically intermittent control. IEEE Trans Neural Netw Learn Syst. 1‐12. https://doi.org/10.1109/TNNLS.2020.3016672 · doi:10.1109/TNNLS.2020.3016672
[16] ZhouH, ZhangY, LiW. Synchronization of stochastic Lévy noise systems on a multi‐weights network and its applications of Chua’s circuits. IEEE Trans Circuits Syst I‐Regul Pap. 2019;66(7):2709‐2722. · Zbl 1468.93025
[17] HuangC, HoD, LuJ, KurthsJ. Partial synchronization in stochastic dynamical networks with switching communication channels. Chaos. 2012;22(2):023108. · Zbl 1331.34107
[18] MartinsG, MoondraA, DubeyA, BhattacharjeeA, KoutsoukosX. Computation and communication evaluation of an authentication mechanism for time‐triggered networked control systems. Sensors. 2016;16(8):1166.
[19] LiuY, TangR, ZhouC, XiangZ, YangX. Event‐triggered leader‐following consensus of multiple mechanical systems with switched dynamics. Int J Syst Sci. 2020;51(16):3563‐3572. · Zbl 1483.93398
[20] LuJ, YangJ, LouJ, QiuJ. Event‐triggered sampled feedback synchronization in an array of output‐coupled boolean control networks. IEEE Trans Cybern. 2021;51(4):2278‐2283.
[21] JiangB, LuJ, LiuY, CaoJ. Periodic event‐triggered adaptive control for attitude stabilization under input saturation. IEEE Trans Circuits Syst I‐Regul Pap. 2020;67(1):249‐258. · Zbl 1468.93127
[22] YangX, LiuY, CaoJ, RutkowskiL. Synchronization of coupled time‐delay neural networks with mode‐dependent average dwell time switching. IEEE Trans Neural Netw Learn Syst. 2020;31(12):5483‐5496.
[23] ZhangW, TangY, LiuY, KurthsJ. Event‐triggering containment control for a class of multi‐agent networks with fixed and switching topologies. IEEE Trans Circuits Syst I‐Regul Pap. 2017;64(3):619‐629.
[24] LiM, ShuaiZ. Global‐stability problem for coupled systems of differential equations on networks. J Differ Equ. 2010;248(1):1‐20. · Zbl 1190.34063
[25] XuD, LiuY, LiuM. Finite‐time synchronization of multi‐coupling stochastic fuzzy neural networks with mixed delays via feedback control. Fuzzy Set Syst. 2021;411:85‐104. · Zbl 1467.93281
[26] ZhaoX, LuX, ZengZ. Synchronized stationary distribution for stochastic multi‐links systems with Markov jump. Nonlinear Anal‐Hybrid Syst. 2021;40:101006. · Zbl 1485.93618
[27] ZhouY, ZengZ. Event‐triggered impulsive control on quasi‐synchronization of memristive neural networks with time‐varying delays. Neural Netw. 2019;110:55‐65. · Zbl 1441.93188
[28] GronwallT. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann Math. 1919;20(4):292‐296. · JFM 47.0399.02
[29] LiuY, GuoY, LiW. The stability of stochastic coupled systems with time delays and time‐varying coupling structure. Appl Math Comput. 2016;290:507‐520. · Zbl 1410.34217
[30] YangX, LuJ, HoD, SongQ. Synchronization of uncertain hybrid switching and impulsive complex networks. App Math Model. 2018;59:379‐392. · Zbl 1480.34071
[31] LuJ, HoD, CaoJ, KurthsJ. Exponential synchronization of linearly coupled neural networks with impulsive disturbances. IEEE Trans Neural Netw. 2011;22(2):329‐336.
[32] LiuX, LiZ, WuK. Boundary Mittag‐Leffler stabilisation of fractional reaction‐diffusion cellular neural networks. Neural Netw. 2020;132:269‐280. · Zbl 1478.93532
[33] YangX, HuangC, ZhuQ. Synchronization of switched neural networks with mixed delays via impulsive control. Chaos Solitons Fractals. 2011;44(10):817‐826. · Zbl 1268.93013
[34] LiuX, WuK, DingX, ZhangW. Boundary stabilization of stochastic delayed Cohen‐Grossberg neural networks with diffusion terms. IEEE Trans Neural Netw Learn Syst. 1‐11. https://doi.org/10.1109/TNNLS.2021.3051363 · doi:10.1109/TNNLS.2021.3051363
[35] HsiaC, JungC, KwonB. On the synchronization theory of Kuramoto oscillators under the effect of inertia. J Differ Equ. 2019;267(2):742‐775. · Zbl 1419.34148
[36] LiuY, WangM, ChuD, SuH. Feedback control based on discrete‐time state observations on synchronization of stochastic impulsive coupled systems. Nonlinear Anal‐Hybrid Syst. 2021;39:100987. · Zbl 1478.93549
[37] ChoiY, HaS, YunS. Complete synchronization of Kuramoto oscillators with finite inertia. Physica D. 2011;240(1):32‐44. · Zbl 1217.34087
[38] DorflerF, BulloF. Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators. SIAM J Control Optim. 2012;50(3):1616‐1642. · Zbl 1264.34105
[39] CuminD, UnsworthC. Generalising the Kuramoto model for the study of neuronal synchronisation in the brain. Physica D. 2007;226(2):181‐196. · Zbl 1120.34024
[40] VasudevanK, CaversM, WareA. Earthquake sequencing: chimera states with Kuramoto model dynamics on directed graphs. Nonlinear Processes Geophys. 2015;22(5):499‐512.
[41] KozyreffG, VladimirovA, MandelP. Global coupling with time delay in an array of semiconductor lasers. Phys Rev Lett. 2000;85(18):3809‐3812.
[42] LiX, RaoP. Synchronizing a weighted and weakly‐connected Kuramoto‐oscillator digraph with a pacemaker. IEEE Trans Circuits Syst I‐Regul Pap. 2015;62(3):899‐905. · Zbl 1468.94711
[43] YangX, WanX, ChengZ, CaoJ, LiuY, RutkowskiL. Synchronization of switched discrete‐time neural networks via quantized output control with actuator fault. IEEE Trans Neural Netw Learn Syst. 1‐11. https://doi.org/10.1109/TNNLS.2020.3017171 · doi:10.1109/TNNLS.2020.3017171
[44] YangX, LiX, LuJ, ChengZ. Synchronization of time‐delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control. IEEE Trans Cybern. 2020;50(9):4043‐4052.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.