×

Formal Bott-Thurston cocycle and part of a formal Riemann-Roch theorem. (English. Russian original) Zbl 1527.14015

Proc. Steklov Inst. Math. 320, 226-257 (2023); translation from Tr. Mat. Inst. Steklova 320, 243-277 (2023).
Let \(A\) be a commutative ring and \(A((t))\) the algebra of Laurent series over \(A\). Using the concept of Contou-Carrère symbol (see [P. Deligne, Publ. Math., Inst. Hautes Étud. Sci. 73, 147–181 (1991; Zbl 0749.14011)]), the author defines the formal Bott-Thurston cocycle as a certain 2-cocycle on the group of continuous \(A\)-automorphisms of \(A((t))\) taking values in the group of invertible elements of \(A\). The main result of the paper under review is a formal version of the Riemann-Roch theorem, applicable to separated schemes over \(\mathbb Q\). The proof is partly based on ideas and constructions similar to those discussed in [M. Kapranov and É. Vasserot, Ann. Sci. Éc. Norm. Supér. (4) 40, No. 1, 113–133 (2007; Zbl 1129.14022)].

MSC:

14C40 Riemann-Roch theorems
19D45 Higher symbols, Milnor \(K\)-theory
13F25 Formal power series rings
19F15 Symbols and arithmetic (\(K\)-theoretic aspects)
19L10 Riemann-Roch theorems, Chern characters
17B45 Lie algebras of linear algebraic groups

References:

[1] Beilinson, A.; Bloch, S.; Esnault, H., \( \varepsilon \)-Factors for Gauss-Manin determinants, Moscow Math. J., 2, 3, 477-532 (2002) · Zbl 1061.14010 · doi:10.17323/1609-4514-2002-2-3-477-532
[2] Bloch, S., \(K_2\) and algebraic cycles, Ann. Math., Ser. 2,, 99, 349-379 (1974) · Zbl 0298.14005 · doi:10.2307/1970902
[3] Bott, R., On the characteristic classes of groups of diffeomorphisms, Enseign. Math., Sér. 2,, 23, 3-4, 209-220 (1977) · Zbl 0367.57004
[4] Bott, R., On some formulas for the characteristic classes of group-actions, Differential Topology, Foliations and Gelfand-Fuks Cohomology: Proc. Symp., Rio de Janeiro, 1976, 25-61 (1978), Berlin: Springer, Berlin · Zbl 0393.57011 · doi:10.1007/BFb0063501
[5] Bressler, P.; Kapranov, M.; Tsygan, B.; Vasserot, E., Riemann-Roch for real varieties, Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin on the Occasion of His 70th Birthday, 125-164 (2009), Boston: Birkhäuser, Boston · Zbl 1230.14010 · doi:10.1007/978-0-8176-4745-2_4
[6] Brown, K. S., Cohomology of Groups (1982), New York: Springer, New York · Zbl 0584.20036
[7] Brylinski, J.-L., Loop Spaces, Characteristic Classes and Geometric Quantization (1993), Boston: Birkhäuser, Boston · Zbl 0823.55002 · doi:10.1007/978-0-8176-4731-5
[8] Contou-Carrère, C., Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré, C. R. Acad. Sci., Paris, Sér. I,, 318, 8, 743-746 (1994) · Zbl 0840.14031
[9] Contou-Carrère, C., Jacobienne locale d’une courbe formelle relative, Rend. Semin. Mat. Univ. Padova, 130, 1-106 (2013) · Zbl 1317.14100 · doi:10.4171/RSMUP/130-1
[10] Deligne, P., Le déterminant de la cohomologie, Current Trends in Arithmetical Algebraic Geometry: Proc. Summer Res. Conf., Arcata, CA, 1985, 93-177 (1987), Providence, RI: Am. Math. Soc., Providence, RI · Zbl 0629.14008 · doi:10.1090/conm/067/902592
[11] Deligne, P., Le symbole modéré, Publ. Math., Inst. Hautes Étud. Sci., 73, 147-181 (1991) · Zbl 0749.14011 · doi:10.1007/BF02699258
[12] Demazure, M.; Grothendieck, A., Schémas en groupes. I: Prorpiétés générales des schémas en groupes (1970), Berlin: Springer, Berlin · Zbl 0207.51401 · doi:10.1007/BFb0058993
[13] Dieudonné, J., Introduction to the Theory of Formal Groups (1973), New York: M. Dekker, New York · Zbl 0287.14013
[14] Feigin, B. L.; Fuchs, D. B., Cohomologies of Lie groups and Lie algebras, Lie Groups and Lie Algebras II, 125-215 (2000), Berlin: Springer, Berlin
[15] Frenkel, E.; Zhu, X., Gerbal representations of double loop groups, Int. Math. Res. Not., 2012, 17, 3929-4013 (2012) · Zbl 1280.22024
[16] Fuks, D. B., Cohomology of Infinite-Dimensional Lie Algebras (1986), New York: Consultants Bureau, New York · Zbl 0667.17005 · doi:10.1007/978-1-4684-8765-7
[17] Gorchinskiy, S. O.; Osipov, D. V., A higher-dimensional Contou-Carrère symbol: Local theory, Sb. Math., 206, 9, 1191-1259 (2015) · Zbl 1337.19004 · doi:10.1070/SM2015v206n09ABEH004494
[18] Gorchinskiy, S. O.; Osipov, D. V., Continuous homomorphisms between algebras of iterated Laurent series over a ring, Proc. Steklov Inst. Math., 294, 47-66 (2016) · Zbl 1359.13023 · doi:10.1134/S0081543816060031
[19] Gorchinskiy, S. O.; Osipov, D. V., Higher-dimensional Contou-Carrère symbol and continuous automorphisms, Funct. Anal. Appl., 50, 4, 268-280 (2016) · Zbl 1360.19005 · doi:10.1007/s10688-016-0158-8
[20] Gorchinskiy, S. O.; Osipov, D. V., The higher-dimensional Contou-Carrère symbol and commutative group schemes, Russ. Math. Surv., 75, 3, 572-574 (2020) · Zbl 1457.19004 · doi:10.1070/RM9948
[21] Gorchinskiy, S. O.; Osipov, D. V., Iterated Laurent series over rings and the Contou-Carrère symbol, Russ. Math. Surv., 75, 6, 995-1066 (2020) · Zbl 1457.19005 · doi:10.1070/RM9975
[22] Grothendieck, A., Éléments de géométrie algébrique. (1967), Bures-sur-Yvette: Inst. Hautes Étud. Sci., Bures-sur-Yvette
[23] Guieu, L.; Roger, C., L’algèbre et le groupe de Virasoro: Aspects géométriques et algébriques, généralisations (avec un appendice de Vlad Sergiescu) (2007), Montreal: Les Publ. CRM, Montreal · Zbl 1151.17011
[24] Kac, V. G.; Peterson, D. H., Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Natl. Acad. Sci. USA, 78, 6, 3308-3312 (1981) · Zbl 0469.22016 · doi:10.1073/pnas.78.6.3308
[25] Kapranov, M.; Vasserot, É., Formal loops. II: A local Riemann-Roch theorem for determinantal gerbes, Ann. Sci. Éc. Norm. Supér., Ser. 4,, 40, 1, 113-133 (2007) · Zbl 1129.14022
[26] Kato, K., Milnor K-theory and the Chow group of zero cycles, Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory: Proc. AMS-IMS-SIAM Joint Summer Res. Conf., Boulder, CO, 1983, 241-253 (1986), Providence, RI: Am. Math. Soc., Providence, RI · Zbl 0603.14009 · doi:10.1090/conm/055.1/862638
[27] Khesin, B. A.; Wendt, R., The Geometry of Infinite-Dimensional Groups (2009), Berlin: Springer, Berlin · Zbl 1160.22001 · doi:10.1007/978-3-540-77263-7
[28] Milnor, J., Introduction to Algebraic \(K\)-Theory (1971), Princeton, NJ: Princeton Univ. Press, Princeton, NJ · Zbl 0237.18005
[29] Morava, J., An algebraic analog of the Virasoro group, Czech. J. Phys., 51, 12, 1395-1400 (2001) · Zbl 1045.22022 · doi:10.1023/A:1013342608413
[30] Mumford, D., Lectures on Curves on an Algebraic Surface (1966), Princeton, NJ: Princeton Univ. Press, Princeton, NJ · Zbl 0187.42701 · doi:10.1515/9781400882069
[31] Osipov, D. V., Adele constructions of direct images of differentials and symbols, Sb. Math., 188, 5, 697-723 (1997) · Zbl 0909.14011 · doi:10.1070/SM1997v188n05ABEH000230
[32] Osipov, D.; Zhu, X., The two-dimensional Contou-Carrère symbol and reciprocity laws, J. Algebr. Geom., 25, 4, 703-774 (2016) · Zbl 1346.19003 · doi:10.1090/jag/664
[33] Pressley, A.; Segal, G., Loop Groups (1988), Oxford: Clarendon Press, Oxford · Zbl 0638.22009
[34] Segal, G., Unitary representations of some infinite dimensional groups, Commun. Math. Phys., 80, 3, 301-342 (1981) · Zbl 0495.22017 · doi:10.1007/BF01208274
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.