×

Digital implementation of sliding-mode control via the implicit method: a tutorial. (English) Zbl 1526.93144

Summary: The objective of this article, is to provide a clear presentation of the discretization of continuous-time sliding-mode controllers, also known in the automatic control literature as the emulation method, when the implicit (backward) Euler scheme is used. First-order, second-order, and homogeneous controllers are considered. The main theoretical results are recalled in each case, and the focus is put on the discrete-time implementation structure and on the algorithms which allow the designer to solve, at each time-step, the one-step generalized equations which are needed to compute the controllers. The article ends with some open issues.
{© 2020 John Wiley & Sons, Ltd.}

MSC:

93C62 Digital control/observation systems
93B12 Variable structure systems
93C55 Discrete-time control/observation systems
Full Text: DOI

References:

[1] AcaryV, BrogliatoB. Numerical Methods for Nonsmooth Dynamical Systems. Lecture Notes in Applied and Computational Mechanics. Vol 35. New York, NY: Springer‐Verlag; 2008. · Zbl 1173.74001
[2] BrogliatoB, TanwaniA. Dynamical systems coupled with monotone set‐valued operators: formalisms, applications, well‐posedness, and stability. SIAM Rev. 2020;62(1):3‐129. · Zbl 1450.34002
[3] JeanM, MoreauJJ. Dynamics in the presence of unilateral contacts and dry friction: a numerical approach. In: DelPieroG (ed.), MaceriF (ed.), eds. Unilateral Problems in Structural Analysis. International Centre for Mechanical Sciences (Courses and Lectures). Vol 304. Wien, Austria: Springer Verlag; 1987:151‐196. https://hal.archives‐ouvertes.fr/hal‐01864213/document. · Zbl 0780.73069
[4] MoreauJJ. Unilateral contact and dry friction in finite freedom dynamics. In: MoreauJJ (ed.), PanagiotopoulosPD (ed.), eds. Nonsmooth Mechanics and Applications. International Centre for Mechanical Sciences (Courses and Lectures). Vol 302. Vienna, Austria: Springer Verlag; 1988:1‐82. · Zbl 0703.73070
[5] BajiB, CabotA. An inertial proximal algorithm with dry friction: finite convergence results. Set Valued Anal. 2006;14(1):1‐23. · Zbl 1102.65063
[6] PeypouquetJ, SorinS. Evolution equations for maximal monotone operators: asymptotic analysis n continuous and discrete time. J Convex Anal. 2010;17(3‐4):1113‐1163. · Zbl 1214.47080
[7] MoreauJJ. Propriétés des applications “prox”. C R Acad Sci. 1963;256:1069‐1071. · Zbl 0115.10802
[8] BastienJ, SchatzmanM. Numerical precision for differential inclusions with uniqueness. ESAIM: M2AN Math Modell Numer Anal. 2002;36(3):427‐460. · Zbl 1036.34012
[9] BastienJ, SchatzmanM, LamarqueCH. Study of an elastoplastic model with an infinite number of internal degrees of freedom. Europ J Mech A/Solids. 2002;21:199‐222. · Zbl 1023.74009
[10] LippoldG. Error estimates for the implicit Euler approximation of an evolution inequality. Nonlinear Anal. 1990;15:1077‐1089. · Zbl 0727.65058
[11] GaliasZ, YuX. Complex discretization behaviours of a simple sliding‐mode control system. IEEE Trans Circ Syst-II Exp Briefs. 2006;53(8):652‐656.
[12] GaliasZ, YuX. Euler’s discretization of single input sliding‐mode control systems. IEEE Trans Autom Control. 2007;52(9):1726‐1730. · Zbl 1366.93379
[13] GaliasZ, YuX. Analysis of zero‐order holder discretization of two‐dimensional sliding‐mode control systems. IEEE Trans Circ Syst-II Expr Briefs. 2008;55(12):1269‐1273.
[14] YanY, GaliasZ, YuX, SunC. Euler’s discretization effect on a twisting algorithm based sliding mode control. Automatica. 2016;68:203‐208. · Zbl 1334.93046
[15] WangB, BrogliatoB, AcaryV, BoubakirA, PlestanF. Experimental comparisons between implicit and explicit implementations of discrete‐time sliding mode controllers: toward input and output chattering suppression. IEEE Trans Control Syst Technol. 2015;23(5):2071‐2075.
[16] HuberO, BrogliatoB, AcaryV, BoubakirA, PlestanF, WangB. Experimental results on implicit and explicit time‐discretization of equivalent‐control‐based sliding‐mode control. In: FridmanL (ed.), BarbotJP (ed.), PlestanF (ed.), eds. Recent Trends in Sliding‐Mode Control. Control, Robotics and Sensors. Vol 102. London: IET Institution of Engineering and Technology; Londan: 2016;207‐236. · Zbl 1454.93002
[17] LevantA. On fixed and finite time stability in sliding mode control. Paper presented at: Proceedings of the 52nd IEEE Conference on Decision and Control; 2013:4260‐4265; Firenze, Italy.
[18] EfimovD, PolyakovA, LevantA, PerruquettiW. Realization and discretization of asymptotically stable homogeneous systems. IEEE Trans Autom Control. 2017;62(11):5962‐5969. · Zbl 1396.65109
[19] DuH, ZhaiJ, ChenMZQ, ZhuW. Robustness analysis of a continuous higher order finite‐time control system under sampled‐data control. IEEE Trans Autom Control. 2019;64(6):2488‐2494. · Zbl 1482.93359
[20] HuberO, AcaryV, BrogliatoB. Lyapunov stability and performance analysis of the implicit discrete sliding mode control. IEEE Trans Autom Control. 2016;61(10):3016‐3030. · Zbl 1359.93091
[21] HuberO, AcaryV, BrogliatoB, PlestanF. Implicit discrete‐time twisting controller without numerical chattering: analysis and experimental results. Control Eng Pract. 2016;46(1):129‐141.
[22] GülerO. On the convergence of the proximal point algorithm for convex minimization. SIAM J Control Optim. 1991;29(2):403‐419. · Zbl 0737.90047
[23] LeenaertsDMW. On linear dynamic complementary systems. IEEE Trans Circ Syst I Fund Theory Appl. 1999;46(8):1022‐1026. · Zbl 0963.94052
[24] CamlibelMK. Complementarity Methods in the Analysis of Piecewise Linear Dynamical Systems (PhD thesis). Katholieke Universiteit Brabant (Tilburg University), Tilburg, NL; May 2001.
[25] AcaryV, BrogliatoB. Implicit Euler numerical scheme and chattering‐free implementation of sliding mode systems. Syst Control Lett. 2010;59:284‐293. · Zbl 1191.93030
[26] AcaryV, BrogliatoB, OrlovY. Chattering‐free digital sliding‐mode control with state observer and disturbance rejection. IEEE Trans Autom Control. 2012;57(5):1087‐1101. · Zbl 1369.93122
[27] AcaryV, BrogliatoB, OrlovY. Comments on “Chattering‐free digital sliding‐mode control with state observer and disturbance rejection”. IEEE Trans Automat Control. 2016;61(11):3707. · Zbl 1359.93087
[28] AdlyS, BrogliatoB, LeBK. Implicit Euler time‐discretization of a class of Lagrangian systems with set‐valued robust controller. J Convex Anal. 2016;23(1):23‐52. · Zbl 1346.49043
[29] BrogliatoB, PolyakovA. Globally stable implicit Euler time‐discretization of a nonlinear single‐input sliding‐mode control system. Paper presented at: Proceedings of the IEEE 54th International Conference on Decision and Control; December 2015:5426‐5431; Osaka, Japan.
[30] O.Huber, V.Acary, and B.Brogliato. Enhanced matching perturbation attenuation with discrete‐time implementations of sliding‐mode controllers. Paper presented at: Proceedings of the European Control Conference; 2014:2606‐2611; Strasbourg, France.
[31] Miranda‐VillatoroF, BrogliatoB, CastanosF. Multivalued robust tracking control of Lagrange systems: continuous and discrete‐time algorithms. IEEE Trans Autom Control. 2017;62(9):4436‐4450. · Zbl 1390.93690
[32] Miranda‐VillatoroF, BrogliatoB, CastanosF. Set‐valued sliding‐mode control of uncertain linear systems: continuous and discrete‐time analysis. SIAM J Control Optim. 2018;56(3):1756‐1793. · Zbl 1386.93066
[33] Miranda‐VillatoroF, CastanosF, BrogliatoB. Continuous and discrete‐time stability of a robust set‐valued nested controller. Automatica. 2019;107:406‐417. · Zbl 1429.93321
[34] PolyakovA, EfimovD, BrogliatoB. Consistent discretization of finite‐time and fixed‐time stable systems. SIAM J Control Optim. 2019;57(1):78‐103. · Zbl 1405.93097
[35] HuberO, AcaryV, BrogliatoB. Lyapunov stability analysis of the implicit discrete‐time twisting control algorithm. IEEE Trans Autom Control. 2020;65(6):2619‐2626. · Zbl 1533.93565
[36] BrogliatoB, PolyakovA, EfimovD. The implicit discretization of the super‐twisting sliding‐mode control algorithm. IEEE Trans Automat Control. 2020. · Zbl 1533.93091
[37] AungMTS, ShiZ, KikuuweR. A new parabolic sliding mode filter augmented by a linear low‐pass filter and its application to position control. ASME J Dyn Syst Measur Control. 2018;140:041005.
[38] KikuuweR, FujimotoH, YasukouchiS, YamamotoM. Proxy‐based sliding mode control: a safer extension of PID position control. IEEE Trans Robot. 2010;26(4):670‐683.
[39] BaiomyN, KikuuweR. Parameter selection procedure for an amplitude‐ and rate‐saturated controller. Int J Control Automat Syst. 2019;17(4):926‐935.
[40] LuoD, XiongX, JinS, ChenW. Implicit Euler implementation of twisting controller and super‐twisting observer without numerical chattering: precise quasi‐static MEMS mirrors control. Paper presented at: Proceedings of the MATEC Web of Conferences, volume 256. ICMME; 2019:03004.
[41] JinS, KikuuweR, YamamotoM. Improving velocity feedback for position control by using a discrete‐time sliding mode filtering with adaptive windowing. Adv Robot. 2014;14:943‐953.
[42] KikuuweR, TakesueN, SanoA, MochiyamaH, FujimotoH. Admittance and impedance representations of friction based on implicit Euler integration. IEEE Trans Robot. 2006;22(6):1176‐1188.
[43] JinS, KikuuweR, YamamotoM. Parameter selection guidelines for a parabolic sliding mode filter based on frequency and time domain characteristics. J Control Sci Eng. 2012;2012:923679. · Zbl 1263.93220
[44] XiongX, KikuuweR, YamamotoM. Backward‐Euler discretization of second‐order sliding mode control and super‐twisting observer for accurate position control. Paper presented at: Proceedings of the ASME Dynamic Systems and Control Conference DSCC2013, V003T44A002; 2013:DSCC2013‐3872; Palo Alto.
[45] XiongX, KikuuweR, YamamotoM. A differential algebraic method to approximate nonsmooth mechanical systems by ordinary differential equations. J Appl Math. 2013;2013:320276. · Zbl 1266.74035
[46] KikuuweR. A sliding‐mode‐like position controller for admittance control with bounded actuator force. IEEE/ASME Trans Mechatron. 2014;19(5):1489‐1500.
[47] KikuuweR, KanaokaK, KumonT, YamamotoM. Phase‐lead stabilization of force‐projecting master‐slave systems with a new sliding mode filter. IEEE Trans Control Syst Technol. 2015;23(6):2182‐2194.
[48] BaiomyN, KikuuweR. An amplitude‐and rate‐saturated controller for linear plants. Asian J Control. 2019;21(6):1‐15.
[49] KikuuweR. Some stability proofs on proxy‐based sliding mode control. IMA J Math Control Inf. 2018;35:1319‐1341. · Zbl 1417.93239
[50] XiongX, ChenW, JinS, KamalS. Discrete‐time implementation of continuous terminal algorithm with implicit‐Euler method. IEEE Access. 2019;7:175940‐175946.
[51] XiongX, KikuuweR, KamalS, JinS. Implicit‐Euler implementation of super‐twisting observer and twisting controller for second‐order systems. IEEE Trans Circ Syst II Expr Briefs. 2020.
[52] KochS, ReichhartingerM, HornM. Discrete‐time equivalents of the super twisting algorithm. Automatica. 2019;107:190‐199. · Zbl 1429.93049
[53] S.Koch, M.Reichhartinger, and M.Horn. On the discretization of the super‐twisting algorithm. Paper presented at: Proceedings of the IEEE 58th Conference on Decision and Control; 2019:5989‐5994; Nice, France.
[54] WetzlingerM, ReichhartingerM, HornM, FridmanL, MorenoJA. Semi‐implicit discretization of the uniform robust exact differentiator. Paper presented at: Proceedings IEEE 58th Conference on Decision and Control; 2019:5995‐6000, Nice, France.
[55] DrakunovSG, UtkinVI. On discrete‐time sliding modes. Paper presented at: Proceedings of the Nonlinear Control Design Conference; 1989:273‐278; Capri, Italy, IFAC
[56] JinS, KikuuweR, YamamatoM. Real‐time quadratic sliding mode filter for removing noise. Adv Robot. 2012;26(8‐9):877‐896.
[57] Hiriart‐UrrutyJB, LemaréchalC. Fundamentals of Convex Analysis. Grundlehren Text Editions. Berlin, Heidelberg/Germany: Springer‐Verlag; 2001. · Zbl 0998.49001
[58] RobinsonSM. Generalized equations. In: BachemA (ed.), GroetschelM (ed.), KorteB (ed.), eds. Mathematical Programing: The State of the Art, Bonn 1982. New York, NY: Springer Verlag; 1983:346‐367. · Zbl 0554.34007
[59] FacchineiF, PangJS. Finite‐Dimensional Variational Inequalities and Complementarity Problems. Operations Research. Vol I. New York, NY: Springer‐Verlag; 2003. · Zbl 1062.90001
[60] AddiK, BrogliatoB, GoelevenD. A qualitative mathematical analysis of a class of linear variational inequalities via semi‐complementarity problems. Appl Electron Math Progr Ser A. 2011;126(1):31‐67. · Zbl 1229.90224
[61] NguyenT, EwardsC, AzimiV, SuWC. Improving control effort in output feedback sliding mode control of sampled‐data systems. IET Control Theory Appl. 2019;13(13):2128‐2137. · Zbl 07907008
[62] UtkinVI. Sliding‐mode control in discrete‐time and difference systems. In: ZinoberASI (ed.), ed. Variable Structure and Lyapunov Control. Lecture Notes in Control and Information Sciences. Vol 193. Berlin, Heidelberg/Germany: Springer Verlag; 1994:87‐107. · Zbl 0811.93001
[63] DontchevA, LempioF. Difference methods for differential inclusions: a survey. SIAM Rev. 1992;34(2):263‐294. · Zbl 0757.34018
[64] YuX, ChenG. Discretization behaviors of equivalent control based sliding‐mode control systems. IEEE Trans Autom Control. 2003;48(9):1641‐1646. · Zbl 1364.93132
[65] YuX, WangB, GaliasZ, ChenG. Discretisation effect on equivalent control‐based multi‐input sliding‐mode control systems. IEEE Trans Autom Control. 2008;53(6):1563‐1569. · Zbl 1367.93355
[66] WangB, YuX, ChenG. ZOH discretisation effect on single‐input sliding mode control systems with matched uncertainties. Automatica. 2009;45(1):118‐125. · Zbl 1154.93357
[67] YoungKD, UtkinVI, OzgunerU. A control engineer’s guide to sliding mode control. IEEE Trans Control Syst Technol. 1999;7(3):328‐342.
[68] AlexanderJC, SeidmanT. Sliding modes in intersecting switching surfaces: blending. Houst J Math. 1998;24:545‐569. · Zbl 0966.34056
[69] BarbotJP, MonacoS, Normand‐CyrotD, PantalosN. Discretization schemes for nonlinear singularly perturbed systems. Paper presented at: Proceedings of the IEEE International Conference on Decision and Control; December 1991:443‐448; Brighton, UK.
[70] BarbotJP, DjemaiM, MonacoS, Normand‐CyrotD. Analysis and control of nonlinear singularly perturbed systems under sampling. In: LeondesCT (ed.), ed. Digital Control Systems Implementations and Computational Techniques. Control and Dynamic Systems. Advances in Theory and Applications. Vol 79. San Diego, New York, Boston, London, Sydney, Tokyo, Toronto: Academic Press; 1996:203‐246. · Zbl 0855.93045
[71] WuC, van derSchaftAJ, ChenJ. Robust trajectory tracking for incrementally passive nonlinear systems. Automatica. 2019;107(9):595‐599. · Zbl 1429.93083
[72] SuWC, DrakunovSV, OzgunerU. Robust trajectory tracking for incrementally passive nonlinear systems. IEEE Trans Automat Control. 2000;45(3):482‐485. · Zbl 0972.93039
[73] LevantA. Robust exact differentiation via sliding mode technique. Automatica. 1998;34(3):379‐384. · Zbl 0915.93013
[74] MboupM, JoinC, FliessM. Numerical differentiation with annihilators in noisy environment. Numer Alg. 2009;50(4):439‐467. · Zbl 1162.65009
[75] MboupM, RiachyS. Frequency‐domain analysis and tunig of the algebraic differentiators. Int J Control. 2018;91(9):2073‐2081. · Zbl 1401.93139
[76] BrogliatoB, LozanoR, MaschkeB, EgelandO. Dissipative Systems Analysis and Control. Theory and Applications. Communications and Control Engineering. 3rd ed.Springer Nature Switzerland AG; 2020. · Zbl 1432.93001
[77] UtkinVI. Sliding Modes in Control Optimization. Communications and Control Engineering. Berlin, Heidelberg/Germany: Springer Verlag; 1992. · Zbl 0748.93044
[78] Miranda‐VillatoroF, CastanosF. Robust output regulation of strongly passive linear systems with multivalued maximally monotone controls. IEEE Trans Autom Control. 2017;62(1):238‐249. · Zbl 1359.93094
[79] AdlyS, BrogliatoB, LeBK. Well‐posedness, robustness and stability analysis of a set‐valued controller for Lagrangian systems. SIAM J Control Optim. 2013;51(2):1592‐1614. · Zbl 1335.49027
[80] Miranda‐VillatoroF, BrogliatoB, CastanosF. Errata to “Multivalued robust tracking control of Lagrange systems: continuous and discrete‐time algorithms”. IEEE Trans Automat Control. 2018;63(8):2750. · Zbl 1423.93340
[81] KolmogorovAN, FominSV. Elements of the Theory of Functions and Functional Analysis. Vol 1. New York, NY: Graylock Press; 1957.
[82] UtkinVI, DrakunovSV, IzosimovDE, LukyanovAG, UtkinVA. A hierarchical principle of the control system decomposition based on motion separation. Paper presented at: Proceedings 9th IFAC Triennal World Congress; July 1984:1553‐1558; Budapest, Hungary.
[83] DrakunovSV, IzosimovDB, Luk’yanovAG, UtkinVA, UtkinVI. The block control principle I. Autom Remote Control. 1990;51:601‐608. · Zbl 0722.93021
[84] DrakunovSV, IzosimovDB, Luk’yanovAG, UtkinVA, UtkinVI. The block control principle II. Autom Remote Control. 1990;51:737‐746. · Zbl 0753.93012
[85] UtkinVI, ChenDS, ChangHC. Block control principle for mechanical systems. ASME J Dyn Syst Measur Control. 2000;122:1‐10.
[86] JinS, LvZ, XiongX, YuJ. A chattering‐free sliding mode filter enhanced by first order derivative feedforward. IEEE Access. 2020;8:41175‐41185.
[87] LvZ, JinS, XiongX, YuJ. A new quick‐response sliding mode tracking differentiator with its chattering‐free discrete‐time implementation. IEEE Access. 2019;7:130236‐130245.
[88] KikuuweR, FujimotoH. Proxy‐based sliding mode control for accurate and safe position control. Paper presented at: Proceedings of IEEE International Conference on Robotics and Automation; 2006:25‐30; Orlando, Florida.
[89] PrietoPJ, RubioE, HernandezL, UrquijoO. Proxy‐based sliding mode control on platform of 3 degree of freedom (3‐DOF). Adv Robot. 2013;27(10):773‐784.
[90] HuoW, Arnez‐PaniaguaV, DingG, AmiratY, MohammedS. Adaptive proxy‐based controller of an active ankle foot orthosis to assist lower limb movements of paretic patients. Robotica. 2019;37:2147‐2164.
[91] GuGY, ZhuLM, SuCY, DingH, FatikowS. Proxy‐based sliding‐mode tracking control of piezoelectric‐actuated nanopositioning stages. IEEE/ASME Trans Mechatron. 2015;20(4):1956‐1965.
[92] ShtesselYB, MorenoJA, FridmanLM. Twisting sliding mode control with adaptation: Lyapunov design, methodology and application. Automatica. 2017;75:229‐235. · Zbl 1351.93038
[93] ChalangaA, KamalS, FridmanLM, BandyopadhyayB, MorenoJA. Implementation of super‐twisting control: super‐twisting and higher order sliding‐mode observer‐based approaches. IEEE Trans Ind Electron. 2016;63(6):3677‐3685.
[94] LevantA. Sliding order and sliding accuracy in sliding mode control. Int J Control. 1993;58(6):1247‐1263. · Zbl 0789.93063
[95] OrlovY. Finite time stability and robust control synthesis of uncertain switched systems. SIAM J Control Optim. 2005;43(4):1253‐1271. · Zbl 1085.93021
[96] KochS, ReichhartingerM, HornM, FridmanLM. Discrete implementation of sliding mode controllers satisfying accuracy level specifications. Paper presented at: Proceedings of the 14th International Workshop on Variable Structure Systems (VSS); 2016:154‐159; Nanjing, China.
[97] CaoM, FerrisMC. A pivotal method for affine variational inequalities. Math Oper Res. 1996;21:44‐64. · Zbl 0846.90110
[98] HuberO. Analyse et implémentation du contrôle par modes glissants en temps discret (PhD thesis). Université Grenoble‐Alpes, Grenoble, France, May 2015. https://hal.inria.fr/tel‐01194430.
[99] Torres‐GonzalesV, SanchezT, FridmanLM, MorenoJA. Design of continuous twisting algorithm. Automatica. 2017;80:119‐126. · Zbl 1370.93078
[100] YanY, YuX, SunC. Discretization behaviors of a super‐twisting algoriothm based sliding mode control system. Paper presented at: Proceedings of the International Workshop on Recent Advances in Sliding Modes (RASM); 2015; Istanbul, Turkey.
[101] ZhangK, HatanoT, Tien NguyenT, et al. A super‐twisting observer for atomic‐force reconstruction in a probe microscope. Control Eng Pract. 2020;94:104191.
[102] MorenoJA, OsorioM. Strict Lyapunov functions for the super‐twisting algorithm. IEEE Trans Automat Control. 2012;57(4):1035‐1040. · Zbl 1369.93568
[103] PolyakovA, PoznyakA. Reaching time estimation for “super‐twisting” second order sliding mode controller via Lyapunov function designing. IEEE Trans Autom Control. 2009;54(8):1951‐1955. · Zbl 1367.93127
[104] SeeberR, HornM. Stability proof for a well‐established super‐twisting parameter setting. Automatica. 2017;84:241‐243. · Zbl 1375.93033
[105] PolyakovA, EfimovD, PerruquettiW. Finite‐time and fixed‐time stabilization: implicit Lyapunov function approach. Automatica. 2015;51(1):332‐340. · Zbl 1309.93135
[106] LevantA. Quasi‐continuous high‐order sliding‐mode controllers. IEEE Trans Autom Control. 2005;50(11):1812‐1816. · Zbl 1365.93072
[107] DvirY, EfimovD, LevantA, PolyakovA, PerruquettiW. Acceleration of finite‐time‐stable homogeneous systems. Int J Robust Nonlinear Control. 2018;28(5):1757‐1777. · Zbl 1390.93705
[108] ZubovVI. On systems of ordinary differential equations with generalized homogenous right‐hand sides. Izvestia vuzov. Mathematica (in Russian). 1958;1:80‐88.
[109] HermesH. Nilpotent approximations of control systems and distributions. SIAM J Control Optim. 1986;24(4):731‐473. · Zbl 0604.93031
[110] RosierL. Homogenous Lyapunov function for homogenous coninuous vector field. Syst Control Lett. 1992;19:467‐473. · Zbl 0762.34032
[111] BhatSP, BernsteinDS. Geometric homogeneity with applications to finite‐time stability. Math Control Signals Syst. 2005;17:101‐127. · Zbl 1110.34033
[112] LevantA. Homogeneity approach to high‐order sliding mode design. Automatica. 2005;41:823‐830. · Zbl 1093.93003
[113] PolyakovA. Generalized homogeneity in systems and control. Communications and Control Engineering. Switzerland: Springer Nature Switzerland; 2020. · Zbl 1481.93003
[114] PolyakovA. Sliding mode control design using canonical homogeneous norm. Int J Robust Nonlinear Control. 2018;29(3):682‐701. · Zbl 1411.93044
[115] PazyA. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York, NY: Springer; 1983. · Zbl 0516.47023
[116] PerruquettiW, FloquetT, MoulayE. Finite‐time observers: application to secure communication. IEEE Trans Autom Control. 2008;53(1):356‐360. · Zbl 1367.94361
[117] LevantA. Construction principles of 2‐sliding mode design. Automatica. 2007;43(4):576‐586. · Zbl 1261.93027
[118] KawskiM. Geometric homogeneity and stabilization. In: KrenerA (ed.), MayneD (ed.), eds. Proceedings of the IFAC Nonlinear Control Symposium. Lake Tahoe, CA; 1995:164‐169.
[119] ZimenkoK, PolyakovA, EfimovD. On dynamical feedback control design for generalized homogeneous differential inclusions. Paper presented at: Proceedings IEEE Conference on Decision and Control; December 2018:4785‐4790; Miami Beach, FL.
[120] FilippovAF. Differential equations with discontinuous right‐hand sides. Dordrecht: Kluwer; 1988. · Zbl 0664.34001
[121] RoxinE. On finite stability in control systems. Rendiconti del Circolo Matematico di Palermo. 1966;15(3):273‐283. · Zbl 0178.10105
[122] PolyakovA, FridmanL. Stability notions and Lyapunov functions for sliding mode control systems. J Frankl Inst. 2014;351(4):1831‐1865. · Zbl 1372.93072
[123] PolyakovA, BrogliatoB. On consistent discretization of finite‐time stable homogeneous differential inclusions; March 2020. https://hal.inria.fr/hal‐02514847/document.
[124] SanchezT, MorenoJA. Design of Lyapunov functions for a class of homogeneous systems: Generalized forms approach. Int J Robust Nonlinear Control. 2019;29(3):661‐681. · Zbl 1411.93046
[125] EfimovD, PolyakovA, AleksandrovA. Discretization of homogeneous systems using Euler method with a state‐dependent step. Automatica. 2019;108546. · Zbl 1429.93291
[126] PolyakovA, EfimovD, PerruquettiW. Robust stabilization of MIMO systems in finite/fixed time. Int J Robust Nonlinear Control. 2016;26(1):69‐90. · Zbl 1333.93211
[127] LivneM, LevantA. Proper discretization of homogeneous differentiators. Automatica. 2014;50:2007‐2014. · Zbl 1297.93046
[128] KikuuweR, PasaribuR, ByunG. A first‐order differentiator with frst‐order sliding mode filtering. Paper presented at: Proceedings 11th IFAC Symposium on Nonlinear Control Systems (NOLCOS2019); September 2019:1383‐1388; Vienna, Austria.
[129] Carjaval‐RubioJE, LoukianovAG, Sanchez‐TorresJD, DefoortM. On the discretization of a class of homogeneous differentiators. Paper presented at: Proceedings of the 16th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE); 2019; Mexico City, Mexico.
[130] Cruz‐ZavalaE, MorenoJ, FridmanLM. Uniform robust exact differentiator. IEEE Trans Autom Control. 2011;56(11):2727‐2733. · Zbl 1368.94028
[131] MorenoJA. A Lyapunov approach to output feedback control using second‐order sliding modes. IMA J Math Control Inf. 2012;29(3):291‐308. · Zbl 1252.93056
[132] YanY, YuS, YuX. Quantized super‐twisting algorithm based sliding mode control. Automatica. 2019;105:43‐48. · Zbl 1429.93057
[133] NageshI, EdwardsC. A multivariable super‐twisting sliding mode approach. Automatica. 2014;50:984‐988. · Zbl 1298.93108
[134] CottleRW, PangJS, StoneRE. The Linear Complementarity Problem. Computer Science and Scientific Computing: Academic Press; 1992. · Zbl 0757.90078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.