×

Robust model predictive control of uncertain nonlinear time-delay systems via control contraction metric technique. (English) Zbl 1526.93050

Summary: This article is concerned with the problem of robust model predictive control (MPC) for uncertain nonlinear time-delay systems. In order to reduce the computational conservativeness of the existing robust MPC given in the min-max optimization formulation, a novel tube-based MPC method is investigated via exploring MPC and control contraction metric (CCM) technique. Based on the Lyapunov-Krasovskii arguments, the MPC is designed as a nominal controller to generate a reference trajectory. By constructing a functional formulation of the inner product on tangent space, the CCM technique is applied to develop a local ancillary controller to guarantee the actual trajectory being contained within a robust invariant tube. In addition, to alleviate the burden of computing geodesic in the design of CCM technique, we propose a direct method using the neural network to search for the minimal geodesic online. By employing the sequential quadratic programming algorithm, this method improves the efficiency of online calculation with high accuracy. Finally, numerical simulation is employed to validate the effectiveness of the proposed method.
{© 2021 John Wiley & Sons, Ltd.}

MSC:

93B45 Model predictive control
93B35 Sensitivity (robustness)
93C41 Control/observation systems with incomplete information
93C10 Nonlinear systems in control theory
93C43 Delay control/observation systems

Software:

Robotics; YALMIP
Full Text: DOI

References:

[1] DongY, LiangS, WangH. Robust stability and h‐infinite control for nonlinear discrete‐time switched systems with interval time‐varying delay. Math Methods Appl Sci. 2019;42(6):1999‐2015. · Zbl 1415.93200
[2] YangR, ZangF, SunL, ZhouP, ZhangB. Finite‐time adaptive robust control of nonlinear time‐delay uncertain systems with disturbance. Int J Robust Nonlinear Control. 2019;29(4):919‐934. · Zbl 1418.93136
[3] ShiT, ShiP, WangS. Robust sampled‐data model predictive control for networked systems with time‐varying delay. Int J Robust Nonlinear Control. 2019;29(6):1758‐1768. · Zbl 1416.93060
[4] WuK, LiuZG, SunCY. Robust control for a class of time‐delay nonlinear systems via output feedback strategy. Int J Control Autom Syst. 2018;16(3):1091‐1102.
[5] KimJH. Reduced‐order delay‐dependent H‐inifinity filtering for uncertain discrete‐time singular systems with time‐varying delay. Automatica. 2011;47(12):2801‐2804. · Zbl 1235.93088
[6] ShiY, YanM. Robust discrete‐time sliding mode control for uncertain systems with time‐varying state delay. IET Control Theory Appl. 2008;2(8):662‐674.
[7] WeiC, LuoJ, DaiH, YinZ, MaW, YuanJ. Globally robust explicit model predictive control of constrained systems exploiting SVM‐based approximation. Int J Robust Nonlinear Control. 2017;27(16):3000‐3027. · Zbl 1386.93103
[8] ZhangH, SongR, WeiQ, ZhangT. Optimal tracking control for a class of nonlinear discrete‐time systems with time delays based on heuristic dynamic programming. IEEE Trans Neural Netw. 2011;22(12):1851‐1862.
[9] MobayenS, TchierF. A new LMI‐based robust finite‐time sliding mode control strategy for a class of uncertain nonlinear systems. Kybernetika. 2015;51(6):1035‐1048. · Zbl 1363.93056
[10] MobayenS, TchierF. An LMI approach to adaptive robust tracker design for uncertain nonlinear systems with time‐delays and input nonlinearities. Nonlinear Dyn. 2016;85(3):1965‐1978. · Zbl 1349.90683
[11] MofidO, MobayenS, KhoobanM‐H. Sliding mode disturbance observer control based on adaptive synchronization in a class of fractional‐order chaotic systems. Int J Adapt Control Signal Process. 2019;33(3):462‐474. · Zbl 1417.93102
[12] MarruedoDL, AlamoT, CamachoEF. Input‐to‐state stable MPC for constrained discrete‐time nonlinear systems with bounded additive uncertainties. Paper presented at: Proceedings of the 41st IEEE Conference on Decision and Control; 2002:4619‐4624; Las Vegas.
[13] PicassoB, DesiderioD, ScattoliniR. Robust stability analysis of nonlinear discrete‐time systems with application to MPC. IEEE Trans Autom Control. 2012;57(1):185‐191. · Zbl 1369.93466
[14] RaimondoDM, AlamoT, LimónD, CamachoEF. Towards the practical implementation of min‐max nonlinear model predictive control. Paper presented at: Proceedings of the 46th IEEE Conference on Decision and Control; 2007:1257‐1262; New Orleans.
[15] MayneDQ, RawlingsJB, RaoCV, ScokaertPOM. Constrained model predictive control: stability and optimality. Automatica. 2000;36(6):789‐814. · Zbl 0949.93003
[16] ScokaertPOM, RawlingsJB, MeadowsES. Discrete‐time stability with perturbations: application to model predictive control. Automatica. 1997;33(3):463‐470. · Zbl 0876.93064
[17] ScokaertPOM, MayneDQ. Min‐max feedback model predictive control for constrained linear systems. IEEE Trans Autom Control. 1998;43(8):1136‐1142. · Zbl 0957.93034
[18] FontesFACC, MagniL. Min‐max model predictive control of nonlinear systems using discontinuous feedbacks. IEEE Trans Autom Control. 2003;48(10):1750‐1755. · Zbl 1364.93295
[19] RaimondoDM, LimonD, LazarM, MagniL, ndez CamachoEF. Min‐max model predictive control of nonlinear systems: a unifying overview on stability. Eur J Control. 2009;15(1):5‐21. · Zbl 1298.93291
[20] LimonD, AlamoT, SalasF, CamachoEF. Input to state stability of min‐max MPC controllers for nonlinear systems with bounded uncertainties. Automatica. 2006;42(5):797‐803. · Zbl 1137.93407
[21] LazarM, Muñoz de la PeñaD, HeemelsWPMH, AlamoT. On input‐to‐state stability of min-max nonlinear model predictive control. Syst Control Lett. 2008;57(1):39‐48. · Zbl 1129.93433
[22] ZhangJ, ZhaoX, ZuoY, ZhangR. Linear programming‐based robust model predictive control for positive systems. IET Control Theory Appl. 2016;10(15):1789‐1797.
[23] LangsonW, ChryssochoosI, RakovićSV, MayneDQ. Robust model predictive control using tubes. Automatica. 2004;40(1):125‐133. · Zbl 1036.93019
[24] MayneDQ, SeronMM, RakovićSV. Robust model predictive control of constrained linear systems with bounded disturbances. Automatica. 2005;41(2):219‐224. · Zbl 1066.93015
[25] MayneDQ, RakovićSV, FindeisenR, AllgöwerF. Robust output feedback model predictive control of constrained linear systems: time varying case. Automatica. 2009;45(9):2082‐2087. · Zbl 1175.93072
[26] MayneDQ, KerriganEC, vanWykEJ, FalugiP. Tube‐based robust nonlinear model predictive control. Int J Robust Nonlinear Control. 2011;21(11):1341‐1353. · Zbl 1244.93081
[27] CannonM, BuergerJ, KouvaritakisB, RakovicS. Robust tubes in nonlinear model predictive control. IEEE Trans Autom Control. 2011;56(8):1942‐1947. · Zbl 1368.93338
[28] YuS, MaierC, ChenH, AllgöwerF. Tube MPC scheme based on robust control invariant set with application to Lipschitz nonlinear systems. Syst Control Lett. 2013;62(2):194‐200. · Zbl 1259.93048
[29] SunT, PanY, ZhangJ, YuH. Robust model predictive control for constrained continuous‐time nonlinear systems. Int J Control. 2018;91(2):359‐368. · Zbl 1390.93265
[30] LiuX, ShiY, ConstantinescuD. Robust distributed model predictive control of constrained dynamically decoupled nonlinear systems: a contraction theory perspective. Syst Control Lett. 2017;105:84‐91. · Zbl 1372.93085
[31] LopezBT, SlotineJJE, HowJP. Dynamic tube MPC for nonlinear systems. Paper presented at: Proceedings of the American Control Conference; 2019: 1655‐1662; Philadelphia, PA.
[32] SinghSumeet, MajumdarAnirudha, SlotineJean‐Jacques, PavoneMarco. Robust online motion planning via contraction theory and convex optimization. Paper presented at: Proceedings of the IEEE International Conference on Robotics and Automation; 2017:5883‐5890; Singapore, Asia.
[33] KothareMV, BalakrishnanV, MorariM. Robust constrained model predictive control using linear matrix inequalities. Automatica. 1996;32(10):1361‐1379. · Zbl 0897.93023
[34] DingB, HuangB. Constrained robust model predictive control for time‐delay systems with polytopic description. Int J Control. 2007;80(4):509‐522. · Zbl 1117.93031
[35] DingB. Robust model predictive control for multiple time delay systems with polytopic uncertainty description. Int J Control. 2010;83(9):1844‐1857. · Zbl 1214.93037
[36] JiDH, ParkJH, YooWJ, WonSC. Robust memory state feedback model predictive control for discrete‐time uncertain state delayed systems. Appl Math Comput. 2009;215(6):2035‐2044. · Zbl 1194.93071
[37] QinW, HeB, ZhaoP, LiuG. An improved memory state feedback RMPC for uncertain constrained linear systems with multiple uncertain delays. Math Probl Eng. 2015;2015:1‐15. · Zbl 1394.93271
[38] ManchesterIR, SlotineJJE. Control contraction metrics and universal stabilizability. IFAC Proc Vols. 2014;47(3):8223‐8228.
[39] ManchesterIR, SlotineJJE. Control contraction metrics: convex and intrinsic criteria for nonlinear feedback design. IEEE Trans Autom Control. 2017;62(6):3046‐3053. · Zbl 1369.93497
[40] LohmillerW, SlotineJ, JacquesE. On contraction analysis for non‐linear systems. Automatica. 1998;34(6):683‐696. · Zbl 0934.93034
[41] AnPT, HaiNN, HoaiTV. Direct multiple shooting method for solving approximate shortest path problems. J Comput Appl Math. 2013;244(1):67‐76. · Zbl 1267.65073
[42] BensonDA, HuntingtonGT, ThorvaldsenTP, RaoAV. Direct trajectory optimization and costate estimation via an orthogonal collocation method. J Guid Control Dyn. 2006;29(6):1435‐1440.
[43] GargD, PattersonM, HagerWW, RaoAV, BensonDA, HuntingtonGT. A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica. 2010;46(11):1843‐1851. · Zbl 1219.49028
[44] FahrooF, RossIM. Direct trajectory optimization by a Chebyshev pseudospectral method. J Guid Control Dyn. 2002;25(1):160‐166.
[45] LeungK, ManchesterIR. Nonlinear stabilization via control contraction metrics: a pseudospectral approach for computing geodesics. Paper presented at: Proceedings of the American Control Conference; 2017:1284‐1289; Seattle.
[46] WilliamsP. Application of pseudospectral methods for receding Horizon control. J Guid Control Dyn. 2004;27(2):310‐314.
[47] ChenK‐Z, LeungY, LeungK‐S, GaoX‐B. A neural network for solving nonlinear programming problems. Neural Comput Appl. 2002;11(2):103‐111.
[48] XueX, BianW. A project neural network for solving degenerate convex quadratic program. Neurocomputing. 2007;70(13‐15):2449‐2459.
[49] NazemiA, OmidiF. An efficient dynamic model for solving the shortest path problem. Transp Res Part C Emerg Technol. 2013;26:1‐19.
[50] HornJF, SchmidtEM, GeigerBR, DeAngeloMP. Neural network‐based trajectory optimization for unmanned aerial vehicles. J Guid Control Dyn. 2012;35(2):548‐562.
[51] InancT, MuezzinogluMK, MisovecK, MurrayRM. Framework for low‐observable trajectory generation in presence of multiple radars. J Guid Control Dyn. 2008;31(6):1740‐1749.
[52] KellettCM. A compendium of comparison function results. Math Control Signals Syst. 2014;26(3):339‐374. · Zbl 1294.93071
[53] RakovićSV, LevineWS. Handbook of Model Predictive Control. New York, NY: Springer; 2018.
[54] RebleM, EsfanjaniRM, NikraveshS, KamaleddinY, AllgowerF. Model predictive control of constrained non‐linear time‐delay systems. IMA J Math Control Inf. 2011;28(2):183‐201. · Zbl 1230.93035
[55] ItohJ‐I, SakaiT. Cut loci and distance functions. Math J Okayama Univ. 2007;49(1):65‐92. · Zbl 1144.53049
[56] KhalilHK. Nonlinear Systems. Upper Saddle River, NJ: Prentice Hall; 2002. · Zbl 1003.34002
[57] LopezR, OñateE. A variational formulation for the multilayer perceptron. Paper presented at: Proceedings of the International Conference on Artificial Neural Networks. Athens, Greece; 2006:159‐168.
[58] LofbergJ. YALMIP: a toolbox for modeling and optimization in MATLAB. Paper presented at: Proceedings of the IEEE International Conference on Robotics and Automation; 2004:284‐289; New Orleans.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.