×

Continuous state observability and mode reconstructability of switched nonlinear systems with unknown switching function. (English) Zbl 1526.93017

Summary: For switched nonlinear systems, the problems of continuous state observability and mode reconstructability are tackled, assuming the switching function is unknown. First, we give a condition under which the continuous state is observable and the active mode is reconstructible. Furthermore, we provide some relaxed conditions that guarantee the observability of the continuous state vector \(x(t)\); those conditions allow estimating \(x(t)\) even if the active mode cannot be reconstructed. The observability analysis is carried out by the study of an invariant manifold on which the outputs of two systems (fixing each pair of different modes) are equal. Moreover, by assuming that there is a known minimum dwell-time, we propose a way of reconstructing the state vector and the switching function, provided the respective observability conditions are fulfilled. The reconstruction procedure involves the use of finite-time homogeneous sliding mode differentiator. In a short section, we show how the obtained observability conditions match with the known structural ones for linear systems. Then, we see that the proposed state reconstruction scheme can also be applied to that particular class of systems. We point out that the original system is not required to be in any specific form, which may be an advantage of the estimation method proposed in this paper. By an academic example with simulations, we illustrate the analysis carried out along the paper and the respective reconstruction method.
{© 2020 John Wiley & Sons Ltd}

MSC:

93B07 Observability
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C10 Nonlinear systems in control theory
93B12 Variable structure systems
93B53 Observers
Full Text: DOI

References:

[1] VidalR, ChiusoA, SoattoS, SastryS. Observability of linear hybrid systems. HSCC 2003. In: Maler O, Pnueli A, eds. Hybrid Systems: Computation and Control. Lecture Notes in Computer Science 2623. Heidelberg, Germany: Springer Berlin; 2003;526‐539. https://doi.org/10.1007/3‐540‐36580‐X_38. · Zbl 1032.93024 · doi:10.1007/3‐540‐36580‐X_38
[2] BabaaliM, PappasGJ. Observability of switched linear systems in continuous time. Hybrid Systems: Computation and Control, Lecture Notes in Computer Science. Vol 3414. Berlin, Heidelberg/Germany: Springer; 2005:103‐117. · Zbl 1078.93012
[3] De SantisE, Di BenedettoMD, PolaG. A structural approach to detectability for a class of hybrid systems. Automatica. 2009;45:1202‐1206. · Zbl 1162.93391
[4] MeraM, BejaranoFJ. On mode reconstructability and reconstructability sets of piecewise linear systems. Int J Control. 2020;1‐9. https://doi.org/10.1080/00207179.2020.1733098. · Zbl 1478.93076 · doi:10.1080/00207179.2020.1733098
[5] PetterssonS. Designing switched observers for switched systems using multiple Lyapunov functions and dwell‐time switching. IFAC Proceedings Volumes; 2006;39(15):18‐23. http://dx.doi.org/10.3182/20060607‐3‐it‐3902.00008. · doi:10.3182/20060607‐3‐it‐3902.00008
[6] BejaranoFJ, PisanoA. Switched observers for switched linear systems with unknown inputs. IEEE Trans Autom Control. 2011;56(3):681‐686. · Zbl 1368.93043
[7] BejaranoFJ, FridmanL. State exact reconstruction for switched linear systems via a super‐twisting algorithm. Int J Syst Sci. 2011;42(5):717‐724. · Zbl 1233.93040
[8] BejaranoFJ, MeraM. Robust Luenberger‐like observer for control of linear switched systems under arbitrary unknown switched function. Asian J Control. https://doi.org/10.1002/asjc.2406. · Zbl 07886907 · doi:10.1002/asjc.2406
[9] ChaibaS, BoutataD, BenaliaA, BarbotJ‐P. Observability of the discrete state for dynamical piecewise hybrid systems. Nonlinear Anal Hybrid Syst Appl. 2005;63(3):423‐438. · Zbl 1113.93020
[10] BarbotJP, SaadaouiH, DjemaïM, ManamanniN. Nonlinear observer for autonomous switching systems with jumps. Nonlinear Anal Hybrid Syst. 2007;1(4):537‐547. https://doi.org/10.1016/j.nahs.2006.01.001. · Zbl 1131.93310 · doi:10.1016/j.nahs.2006.01.001
[11] HernandezSM, GarcíaRA. An observer for switched lipschitz continuous systems. Int J Control. 2014;87(1):207‐222. https://doi.org/10.1080/00207179.2013.826821. · Zbl 1317.93055 · doi:10.1080/00207179.2013.826821
[12] ArichiF, DjemaiM, CherkiB, ManamanniN. Continuous and discrete state estimation for a class of nonlinear switched systems. IEEE Trans Circ Syst II Exp Briefs. 2015;62(7):691‐695. https://doi.org/10.1109/TCSII.2015.2415713. · doi:10.1109/TCSII.2015.2415713
[13] XiangZR, XiangWM. Observer design for a class of switched nonlinear systems. Control Intell Syst. 2008;36(4):318‐322. https://doi.org/10.2316/journal.201.2008.4.201‐1920. · Zbl 1173.93007 · doi:10.2316/journal.201.2008.4.201‐1920
[14] ManaaI, BarhoumiN, MsahliF. Global stability analysis of switched nonlinear observers. Int J Automat Comput. 2015;12(4):432‐439. https://doi.org/10.1007/s11633‐014‐0855‐9. · doi:10.1007/s11633‐014‐0855‐9
[15] YangJ, ChenY, ZhuF, YuK, BuX. Synchronous switching observer for nonlinear switched systems with minimum dwell time constraint. J Frankl Inst. 2015;352(11):4665‐4681. https://doi.org/10.1016/j.jfranklin.2015.07.010. · Zbl 1395.93131 · doi:10.1016/j.jfranklin.2015.07.010
[16] ZhangJ, ZhuF, ZhaoX, WangF. Robust impulsive reset observers of a class of switched nonlinear systems with unknown inputs. J Frankl Inst. 2017;354(7):2924‐2943. https://doi.org/10.1016/j.jfranklin.2017.01.032. · Zbl 1364.93103 · doi:10.1016/j.jfranklin.2017.01.032
[17] ShimH, TanwaniA. Hybrid‐type observer design based on a sufficient condition for observability in switched nonlinear systems. Int J Robust Nonlinear Control. 2014;24(6):1064‐1089. https://doi.org/10.1002/rnc.2901. · Zbl 1291.93058 · doi:10.1002/rnc.2901
[18] PerezC, MeraM. Robust observer‐based control of switched nonlinear systems with quantized and sampled output. Kybernetika. 2015;54(1):59‐80. https://doi.org/10.14736/kyb‐2015‐1‐0059. · Zbl 1340.93167 · doi:10.14736/kyb‐2015‐1‐0059
[19] LongL, ZhaoJ. Switched‐observer‐based adaptive neural control of MIMO switched nonlinear systems with unknown control gains. IEEE Trans Neural Netw Learn Syst. 2017;28(7):1696‐1709. https://doi.org/10.1109/TNNLS.2016.2521425. · doi:10.1109/TNNLS.2016.2521425
[20] LevantA. High‐order sliding modes: differentiation and output‐feedback control. Int J Control. 2003;76(9‐10):924‐941. · Zbl 1049.93014
[21] DavilaJ, PisanoA, UsaiE. Continuous and discrete state reconstruction for nonlinear switched systems via high‐order sliding‐mode observers. Int J Syst Sci. 2011;42(5):725‐735. https://doi.org/10.1080/00207721.2010.518254. · Zbl 1233.93054 · doi:10.1080/00207721.2010.518254
[22] RíosH, DávilaJ, FridmanL. High‐order sliding mode observers for nonlinear autonomous switched systems with unknown inputs. J Frankl Inst. 2012;349(10):2975‐3002. · Zbl 1256.93034
[23] MénardT, MoulayE, PerruquettiW. A global high‐gain finite‐time observer. IEEE Trans Automat Control. 2010;55(6):1500‐1506. https://doi.org/10.1109/TAC.2010.2045698. · Zbl 1368.93052 · doi:10.1109/TAC.2010.2045698
[24] AbrahamR, MarsdenJE. Foundations of Mechanics. 2nd ed.Boston, MA: Addison‐Wesley Publishing Company, United States of America; 1980.
[25] IsidoriA. Nonlinear Control Systems. London, UK: Springer‐Verlag; 1995. · Zbl 0878.93001
[26] NijmeijerH, van derSchafA. Nonlinear Dynamical Control Systems. London: Springer‐Verlag; 1990. · Zbl 0701.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.