×

Prediction of wing rock in fixed wing micro aerial vehicles. (English) Zbl 1526.76031

Summary: Wing rock is a complex phenomenon that occurs as a result of the system’s inherent aerodynamic nonlinearities and is dominant only in the roll motion. It has been intensively investigated on heavily swept delta wings, but limited work has been done on rectangular wings, which are becoming increasingly popular in micro aerial vehicles. This research investigates the wing rock features of a rectangular wing using experimental, numerical, and analytical approaches. Initially, free-to-roll wind tunnel tests using an air bearing-based apparatus are performed. Then, a validated numerical method based on solving the three-dimensional incompressible Reynolds-averaged Navier-Stokes equations is utilized in three different approaches: the static tests, the unsteady forced roll tests, and the unsteady free-to-roll tests. Both unsteady approaches are compared, and the flow-field analysis is done with Liutex, a novel vortex identification method. Afterward, using numerical simulation data, an analytical method based on multiple time scales is modeled and the stability properties are determined using bifurcation analysis. The experimental and numerical results are in good agreement. The findings show that the separation bubble’s movement and interaction with the wingtip vortices are crucial in inducing the wing rock phenomenon in rectangular wings.

MSC:

76G25 General aerodynamics and subsonic flows
76M12 Finite volume methods applied to problems in fluid mechanics
76F65 Direct numerical and large eddy simulation of turbulence
76-05 Experimental work for problems pertaining to fluid mechanics
Full Text: DOI

References:

[1] Nolan, RC, Wing rock prediction method for a high performance fighter aircraft (1992), Columbus: Air Force Institute of Tech Wright-Patterson AFB Oh School of Engineering, Columbus
[2] Davison, MT, An examination of wing rock for the f-15 (1992), Columbus: Air Force Institute of Tech Wright-Patterson AFB Oh School Of Engineering, Columbus
[3] Quast, T.; Nelson, R.; Fisher, D., A study of high alpha dynamics and flow visualization for a 2.5-percent model of the f-18 HARV undergoing wing rock, 9th Appl Aerodyn Conf (1991) · doi:10.2514/6.1991-3267
[4] Arena, AJR; Nelson, R., The effect of asymmetric vortex wake characteristics on a slender delta wing undergoing wing rock motion, 16th Atmos Flight Mech Conf (1989) · doi:10.2514/6.1989-3348
[5] Arena, AS Jr; Nelson, RC, Experimental investigations on limit cycle wing rock of slender wings, J Aircr, 31, 5, 1148-1155 (1994) · doi:10.2514/3.46625
[6] Ross, AJ, Investigation of nonlinear motion experienced on a slender-wing research aircraft, J Aircr, 9, 9, 625-631 (1972) · doi:10.2514/3.59050
[7] Jun, YW; Nelson, R., Leading edge vortex dynamics on a delta wing undergoing a wing rock motion, 25th AIAA Aerosp Sci Meet (1987) · doi:10.2514/6.1987-332
[8] Levin, D.; Katz, J., Self-induced roll oscillations of low-aspect-ratio rectangular wings, J Aircr, 29, 4, 698-702 (1992) · doi:10.2514/3.46222
[9] Williams, DII; Nelson, R., Roll behavior of low aspect ratio, rectangular wings, 12th Appl Aerodyn Conf (1994) · doi:10.2514/6.1994-1909
[10] Williams, DI; Nelson, R., Testing of low aspect ratio, rectangular wings at high angle-of-attack, 20th Atmos Flight Mech Conf (1995) · doi:10.2514/6.1995-3487
[11] Williams, DII; Nelson, R.; Nelson, R.; Williams, D., II: Fluid-dynamic mechanisms leading to the self-induced oscillations of Larr wings, 35th Aerospace Sci Meet Exhibit (1997) · doi:10.2514/6.1997-830
[12] Gresham N, Wang Z, Gursul I (2009) Aerodynamics of free-to-roll low aspect ratio wings. In: 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. doi:10.2514/6.2009-543
[13] Gresham, NT; Wang, Z.; Gursul, I., Self-induced roll oscillations of nonslender wings, AIAA J, 47, 3, 481-483 (2009) · doi:10.2514/1.42511
[14] Gresham, NT; Wang, Z.; Gursul, I., Low Reynolds number aerodynamics of free-to-roll low aspect ratio wings, Exp Fluids, 49, 1, 11-25 (2010) · doi:10.1007/s00348-009-0726-2
[15] Gursul, I.; Gordnier, R.; Visbal, M., Unsteady aerodynamics of nonslender delta wings, Prog Aerosp Sci, 41, 7, 515-557 (2005) · doi:10.1016/j.paerosci.2005.09.002
[16] Wang, Z.; Hu, T.; Gursul, I., Active control of self-excited roll oscillations of lar wings, Fluid-Struct-Sound Interact Control (2014) · doi:10.1007/978-3-642-40371-2_51
[17] Hu, T.; Wang, Z.; Gursul, I., Passive control of roll oscillations of low-aspect-ratio wings using bleed, Exp Fluids, 55, 6, 1-16 (2014) · doi:10.1007/s00348-014-1752-2
[18] Yang, G.; Lu, X.; Zhuang, L.; Weishaupl, C.; Laschka, B., Nonlinear analysis of dynamic stability and the prediction of wing rock, J Aircr, 39, 1, 84-90 (2002) · doi:10.2514/2.2899
[19] Ohshima R, Miyaji K (2020) Numerical simulations of free-to-roll wing rock phenomena by the time spectral CFD. In: AIAA Scitech 2020 Forum, p 0540. doi:10.2514/6.2020-0540
[20] Zhang, H.; Zhang, Z.; Yuan, X.; Liu, W.; Xie, Y.; Ye, Y., Physical analysis and numerical simulation for the dynamic behaviour of vehicles in pitching oscillations or rocking motions, Sci China Ser E: Technol Sci, 50, 4, 385-401 (2007) · Zbl 1141.76440 · doi:10.1007/s11431-007-0047-8
[21] Chung HS, Cho D, Kim J, Jang YI (2019) Study on wing rock phenomenon of a fighter aircraft using free-to-roll wind tunnel test and dynamic CFD method. In: AIAA Aviation 2019 Forum, p 3591. doi:10.2514/6.2019-3591
[22] Siddiqui W, Umer HM, Maqsood A, Salamat S, Xu H, Xie D (2023) Numerical modeling and analysis of wing rock in Saccon UCAV. In: AIAA SCITECH 2023 Forum, p 1557. doi:10.2514/6.2023-1557
[23] Go, TH; Maqsood, A., Effect of aspect ratio on wing rock at low Reynolds number, Aerosp Sci Technol, 42, 267-273 (2015) · doi:10.1016/j.ast.2015.01.009
[24] Cosyn, P.; Vierendeels, J., Numerical investigation of low-aspect-ratio wings at low Reynolds numbers, J Aircr, 43, 3, 713-722 (2006) · doi:10.2514/1.16991
[25] Torres, GE; Mueller, TJ, Low aspect ratio aerodynamics at low Reynolds numbers, AIAA J, 42, 5, 865-873 (2004) · doi:10.2514/1.439
[26] Liu, C.; Gao, Y.; Tian, S.; Dong, X., Rortex-a new vortex vector definition and vorticity tensor and vector decompositions, Phys Fluids, 30, 3 (2018) · doi:10.1063/1.5023001
[27] Shrestha, P.; Nottage, C.; Yu, Y.; Alvarez, O.; Liu, C., Stretching and shearing contamination analysis for Liutex and other vortex identification methods, Adv Aerodyn, 3, 1, 1-20 (2021) · doi:10.1186/s42774-020-00060-9
[28] Liu, C.; Gao, Y-S; Dong, X-R; Wang, Y-Q; Liu, J-M; Zhang, Y-N; Cai, X-S; Gui, N., Third generation of vortex identification methods: omega and Liutex/Rortex based systems, J Hydrodyn, 31, 2, 205-223 (2019) · doi:10.1007/s42241-019-0022-4
[29] Spalart, P.; Allmaras, S., A one-equation turbulence model for aerodynamic flows, 30th Aerosp Sci Meet Exhibit (1992) · doi:10.2514/6.1992-439
[30] Menter, FR, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J, 32, 8, 1598-1605 (1994) · doi:10.2514/3.12149
[31] Maqsood, A.; Go, TH, Multiple time scale analysis of aircraft longitudinal dynamics with aerodynamic vectoring, Nonlinear Dyn, 69, 3, 731-742 (2012) · Zbl 1253.93083 · doi:10.1007/s11071-011-0300-3
[32] Hegazy, U., Dynamics and control of a self-sustained electromechanical seismographs with time-varying stiffness, Meccanica, 44, 4, 355-368 (2009) · Zbl 1177.70031 · doi:10.1007/s11012-008-9171-1
[33] Rusinek, R.; Weremczuk, A., Recent advances in periodic vibrations of the middle ear with a floating mass transducer, Meccanica, 55, 12, 2609-2621 (2020) · doi:10.1007/s11012-020-01226-x
[34] Lenci, S.; Clementi, F.; Warminski, J., Nonlinear free dynamics of a two-layer composite beam with different boundary conditions, Meccanica, 50, 3, 675-688 (2015) · Zbl 1320.74053 · doi:10.1007/s11012-014-9945-6
[35] Razzak, M.; Alam, M.; Sharif, M., Modified multiple time scale method for solving strongly nonlinear damped forced vibration systems, Results phys, 8, 231-238 (2018) · doi:10.1016/j.rinp.2017.12.015
[36] Nayfeh, A.; Elzebda, J.; Mook, D., Analytical study of the subsonic wing-rock phenomenon for slender delta wings, J Aircr, 26, 9, 805-809 (1989) · doi:10.2514/3.45844
[37] Guglieri, G.; Quagliotti, F., Experimental observation and discussion of the wing rock phenomenon, Aerosp Sci Technol, 1, 2, 111-123 (1997) · doi:10.1016/S1270-9638(97)90041-9
[38] Go, T.; Ramnath, R., An analytical approach to the aircraft wing rock dynamics, AIAA Atmos Flight Mech Conf Exhibit (2001) · doi:10.2514/6.2001-4426
[39] Gai, G.; Timme, S., Nonlinear reduced-order modelling for limit-cycle oscillation analysis, Nonlinear Dyn, 84, 2, 991-1009 (2016) · doi:10.1007/s11071-015-2544-9
[40] Arena Jr, AS (1992) An experimental and computational investigation of slender wings undergoing wing rock. PhD thesis, University of Notre Dame
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.