×

Doubling of asymptotically flat half-spaces and the Riemannian Penrose inequality. (English) Zbl 1526.53037

In this paper, using a doubling technique, a Riemannian Penrose-type inequality is obtained for asymptotically flat half-spaces obeying appropriate positivity properties.
More precisely, let \((M,g)\) be a Riemannian \(n\)-manifold in the usual dimension range, i.e., \(3\leq n\leq 7\), satisfying two assumptions. The first assumption is that \((M,g)\) is an asymptotically flat half-space, which means that it contains an asymptotically flat region defined in the usual way, i.e., by fixing a non-compact coordinate chart in \(M\) and declaring the fall-off properties of the metric and its curvature in it, moreover it has a non-compact boundary \(\partial M\). The second assumption is that it contains a horizon boundary, i.e., a two-sided closed minimal hypersurface \(\Sigma\subset M\) such that the scalar curvature of \(g\) is non-negative along the corresponding exterior region, i.e., the non-compact connected component of \(M\setminus\Sigma\), necessarily involving the previous asymptotically flat region, moreover the mean curvature of the boundary portion of \(M\) belonging to this exterior region is non-negative. For a more precise description of this situation see the introduction of the paper. Finally introduce the mass \(m(g)\) of \((M,g)\) by an expression which seems to be an appropriate generalization of the usual ADM mass, see Equation (2) in the paper. Then authors’ main result is that under these circumstances the inequality \[ m(g)\leq\left(\frac{1}{2}\right)^{\frac{n}{n-1}} \left(\frac{\mathrm{Area}_g(\Sigma )}{\omega_{n-1}}\right)^{\frac{n-2}{n-1}} \] holds, where \(\omega_{n-1}\) is the area of the Euclidean \((n-1)\)-sphere \(S^{n-1}\subset{\mathbb R}^n\), with equality if and only if \((M,g)\) is isometric to the Schwarzschild half-space, see Corollary 10 and Theorem 12 in the paper.
The proof is based on “doubling” \((M,g)\), i.e., gluing two copies of \((M,g)\) together along their boundaries \(\partial M\) with appropriate induced orientations and then “smoothing off” the resulting data along this gluing hypersurface.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53Z05 Applications of differential geometry to physics
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory

References:

[1] Almaraz, S., Convergence of scalar-flat metrics on manifolds with boundary under a Yamabe-type flow, J. Differ. Equ., 259, 2626-2694 (2015) · Zbl 1320.53078 · doi:10.1016/j.jde.2015.04.011
[2] Almaraz, S.; Barbosa, E.; de Lima, LL, A positive mass theorem for asymptotically flat manifolds with a non-compact boundary, Commun. Anal. Geom., 24, 673-715 (2016) · Zbl 1360.53035 · doi:10.4310/CAG.2016.v24.n4.a1
[3] Almaraz, S.; de Lima, LL; Mari, L., Spacetime positive mass theorems for initial data sets with non-compact boundary, Int. Math. Res. Not. IMRN, 4, 2783-2841 (2021) · Zbl 1470.83025 · doi:10.1093/imrn/rnaa226
[4] Arnowitt, R.; Deser, S.; Misner, C., Coordinate invariance and energy expressions in general relativity, Phys. Rev.(2), 122, 997-1006 (1961) · Zbl 0094.23003 · doi:10.1103/PhysRev.122.997
[5] Barbosa, E.; Meira, A., A positive mass theorem and Penrose inequality for graphs with noncompact boundary, Pac. J. Math., 294, 257-273 (2018) · Zbl 1386.53047 · doi:10.2140/pjm.2018.294.257
[6] Bartnik, R., The mass of an asymptotically flat manifold, Commun. Pure Appl. Math., 39, 661-693 (1986) · Zbl 0598.53045 · doi:10.1002/cpa.3160390505
[7] Bray, HL, Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Differ. Geom., 59, 177-267 (2001) · Zbl 1039.53034 · doi:10.4310/jdg/1090349428
[8] Bray, HL; Lee, DA, On the Riemannian Penrose inequality in dimensions less than eight, Duke Math. J., 148, 81-106 (2009) · Zbl 1168.53016 · doi:10.1215/00127094-2009-020
[9] Brendle, S., A generalization of the Yamabe flow for manifolds with boundary, Asian J. Math., 6, 625-644 (2002) · Zbl 1039.53035 · doi:10.4310/AJM.2002.v6.n4.a2
[10] Brendle, S.; Chen, S-YS, An existence theorem for the Yamabe problem on manifolds with boundary, J. Eur. Math. Soc.: JEMS, 16, 991-1016 (2014) · Zbl 1293.53047 · doi:10.4171/JEMS/453
[11] Carlotto, A.; Chodosh, O.; Eichmair, M., Effective versions of the positive mass theorem, Invent. Math., 206, 975-1016 (2016) · Zbl 1354.53071 · doi:10.1007/s00222-016-0667-3
[12] Carlotto, A.; Schoen, R., Localizing solutions of the Einstein constraint equations, Invent. Math., 205, 559-615 (2016) · Zbl 1353.83010 · doi:10.1007/s00222-015-0642-4
[13] Corvino, J., Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun. Math. Phys., 214, 137-189 (2000) · Zbl 1031.53064 · doi:10.1007/PL00005533
[14] Czimek, S.: On the static metric extension problem, Master’s thesis (2014). https://www.math.uni-leipzig.de/ czimek/mthesis.pdf
[15] de Lima, L.L.: Conserved quantities in general relativity: the case of initial data sets with a noncompact boundary. In: Gromov, M., Lawson, H.B. Jr. (eds.) Perspectives in Scalar Curvature. World Scientific, 2022 (2021). arXiv:2103.06061 (to appear)
[16] Eichmair, M.; Galloway, GJ; Mendes, A., Initial data rigidity results, Commun. Math. Phys., 386, 253-268 (2021) · Zbl 1481.53047 · doi:10.1007/s00220-021-04033-x
[17] Escobar, JF, The Yamabe problem on manifolds with boundary, J. Differ. Geom., 35, 21-84 (1992) · Zbl 0771.53017 · doi:10.4310/jdg/1214447805
[18] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224. Springer, Berlin, ISBN 3-540-13025-X · Zbl 1042.35002
[19] Gromov, M.; Lawson, HB, Spin and scalar curvature in the presence of a fundamental group I, Ann. Math. (2), 111, 209-230 (1980) · Zbl 0445.53025 · doi:10.2307/1971198
[20] Huang, L-H; Damin, W., The equality case of the Penrose inequality for asymptotically flat graphs, Trans. Am. Math. Soc., 367, 31-47 (2015) · Zbl 1376.53062 · doi:10.1090/S0002-9947-2014-06090-X
[21] Huisken, G.; Ilmanen, T., The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differ. Geom., 59, 353-437 (2001) · Zbl 1055.53052 · doi:10.4310/jdg/1090349447
[22] Kazdan, J.L., Warner, F.W.: Prescribing curvatures. In: Differential Geometry (Proceedings of Symposia in Pure Mathematics, Vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 2, pp. 309-319 (1975) · Zbl 0313.53017
[23] Koerber, T.: The Riemannian Penrose inequality for asymptotically flat manifolds with non-compact boundary. J. Differ. Geom. (2019). arXiv:1909.13283 (to appear)
[24] Lam, M-KG, The Graph Cases of the Riemannian Positive Mass and Penrose Inequalities in All Dimensions (2011), Ann Arbor: ProQuest LLC, Ann Arbor
[25] Lee, JM; Parker, TH, The Yamabe problem, Bull. Am. Math. Soc. (N.S.), 17, 37-91 (1987) · Zbl 0633.53062 · doi:10.1090/S0273-0979-1987-15514-5
[26] Lu, S., Miao, P.: Rigidity of Riemannian Penrose inequality with corners and its implications. J. Funct. Anal. no. 281, Paper No. 109231, 11 (2021) · Zbl 1484.53080
[27] Marquardt, T., Weak solutions of inverse mean curvature flow for hypersurfaces with boundary, J. Reine Angew. Math., 728, 237-261 (2017) · Zbl 1371.53064 · doi:10.1515/crelle-2014-0116
[28] McCormick, S.; Miao, P., On a Penrose-like inequality in dimensions less than eight, Int. Math. Res. Not. IMRN, 7, 2069-2084 (2019) · Zbl 1429.53055 · doi:10.1093/imrn/rnx181
[29] McFeron, D.; Székelyhidi, G., On the positive mass theorem for manifolds with corners, Commun. Math. Phys., 313, 425-443 (2012) · Zbl 1253.53032 · doi:10.1007/s00220-012-1498-8
[30] Meeks, WW III; Yau, S-T, The existence of embedded minimal surfaces and the problem of uniqueness, Math. Z., 179, 151-168 (1982) · Zbl 0479.49026 · doi:10.1007/BF01214308
[31] Miao, P., Positive mass theorem on manifolds admitting corners along a hypersurface, Adv. Theor. Math. Phys., 2002, 6, 1163-1182 (2003) · doi:10.4310/ATMP.2002.v6.n6.a4
[32] Penrose, R., Naked singularities, Ann. N. Y. Acad. Sci., 224, 125-134 (1973) · Zbl 0925.53023 · doi:10.1111/j.1749-6632.1973.tb41447.x
[33] Raulot, S., Green functions for the Dirac operator under local boundary conditions and applications, Ann. Glob. Anal. Geom., 39, 337-359 (2011) · Zbl 1217.53048 · doi:10.1007/s10455-010-9236-y
[34] Schoen, R., Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differ. Geom., 20, 479-495 (1984) · Zbl 0576.53028 · doi:10.4310/jdg/1214439291
[35] Schoen, R.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In: Topics in Calculus of Variations (Montecatini Terme, 1987), Lecture Notes in Mathematics, vol. 1365, pp. 120-154. Springer, Berlin (1989) · Zbl 0702.49038
[36] Schoen, R.; Yau, S-T, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., 65, 45-76 (1979) · Zbl 0405.53045 · doi:10.1007/BF01940959
[37] Schoen, R.; Yau, S-T, On the structure of manifolds with positive scalar curvature, Manuscripta Math., 28, 159-183 (1979) · Zbl 0423.53032 · doi:10.1007/BF01647970
[38] Shi, Y.; Tam, L-F, Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature, J. Differ. Geom., 62, 79-125 (2002) · Zbl 1071.53018 · doi:10.4310/jdg/1090425530
[39] Volkmann, A.: Free boundary problems governed by mean curvature, PhD thesis (2015). https://d-nb.info/1067442340/34
[40] Witten, E., A new proof of the positive energy theorem, Commun. Math. Phys., 80, 381-402 (1981) · Zbl 1051.83532 · doi:10.1007/BF01208277
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.