×

Why do (weak) Meyer sets diffract? (English) Zbl 1526.43003

Summary: Given a weak model set in a locally compact abelian group, we construct a relatively dense set of common Bragg peaks for all its subsets that have non-trivial Bragg spectrum. Next, we construct a relatively dense set of common norm almost periods for the diffraction, pure point, absolutely continuous and singular continuous spectrum, respectively, of all its subsets. We use the Fibonacci model set to illustrate these phenomena. We extend all these results to arbitrary translation bounded weighted Dirac combs supported within some Meyer set. We complete the paper by discussing extensions of the existence of the generalized Eberlein decomposition for measures supported within some Meyer set.

MSC:

43A25 Fourier and Fourier-Stieltjes transforms on locally compact and other abelian groups
52C23 Quasicrystals and aperiodic tilings in discrete geometry
43A46 Special sets (thin sets, Kronecker sets, Helson sets, Ditkin sets, Sidon sets, etc.)

References:

[1] Argabright, L.N., Gil de Lamadrid, J.: Fourier analysis of unbounded measures on locally compact abelian groups. Memoirs Am. Math. Soc. 145, 53 (1974) · Zbl 0294.43002
[2] Baake, M.: Diffraction of weighted lattice subsets. Can. Math. Bull. 45, 483-498 (2002). arXiv:1511.00885 · Zbl 1161.52309
[3] Baake, M., Gähler, F., Pair correlations of aperiodic inflation rules via renormalisation: Some interesting examples. Topol. Appl. 205, 4-27 (2016). arXiv:1511.00885 · Zbl 1359.37025
[4] Baake, M., Grimm, U.: Aperiodic Order. Vol. 1: A Mathematical Invitation. Cambridge University Press, Cambridge (2013) · Zbl 1295.37001
[5] Baake, M., Grimm, U. (eds.): Aperiodic Order. Vol. 2: Crystallography and Almost Periodicity, Cambridge University Press, Cambridge (2017)
[6] Baake, M.; Grimm, U., Squirals and beyond: substitution tilings with singular continuous spectrum, Ergodic Theory Dyn. Syst., 34, 1077-1102 (2014) · Zbl 1315.37015 · doi:10.1017/etds.2012.191
[7] Baake, M., Grimm, U.: Fourier transform of Rauzy fractals and point spectrum of 1D Pisot inflation tilings. Documenta Mathematica 25, 2303-2337 (2020). arXiv:1907.11012 · Zbl 1462.11060
[8] Baake, M., Huck, C., Strungaru, N.: On weak model sets of extremal density. Indag. Math. 28, 3-31 (2017). arXiv:1512.07129v2 · Zbl 1364.82011
[9] Baake, M., Lenz, D.: Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra. Ergodic Theory Dyn. Syst. 24, 1867-1893 (2004). arXiv:math.DS/0302231 · Zbl 1127.37004
[10] Baake, M., Lenz, D., Moody, R.V.: A characterisation of model sets via dynamical systems. Ergodic Theory Dyn. Syst. 27, 341-382 (2007). arXiv:math.DS/0511648 · Zbl 1114.82022
[11] Baake, M., Moody, R.V.: Weighted Dirac combs with pure point diffraction. J. Reine Angew. Math. (Crelle) 573, 61-94 (2004). arXiv:math.MG/0203030 · Zbl 1188.43008
[12] Berg, C.; Forst, G., Potential Theory on Locally Compact Abelian Groups (1975), Berlin: Springer, Berlin · Zbl 0308.31001 · doi:10.1007/978-3-642-66128-0
[13] Blech, I., Cahn, J. W., Gratias, D.: Reminiscences about a Chemistry Nobel Prize won with metallurgy: Comments on D. Shechtman and I. A. Blech; Metall. Trans. A, 1985, vol. 16A, pp. 1005-12, Metall. Mater. Trans. A 43, 3411-3422 (2012)
[14] Dworkin, S., Spectral theory and \(X\)-ray diffraction, J. Math. Phys., 34, 2965-2967 (1993) · Zbl 0808.47052 · doi:10.1063/1.530108
[15] El Abdalaoui, EH; Lemańczyk, M.; de la Rue, T., A dynamical point of view on the set of \({\cal{B} } \)-free integers, Int. Math. Res. Not., 2015, 16, 7258-7286 (2015) · Zbl 1341.37002 · doi:10.1093/imrn/rnu164
[16] Gratias, D.; Quiquandon, M., Discovery of quasicrystals: the early days, Comptes Rendus Physique, 20, 803-816 (2019) · doi:10.1016/j.crhy.2019.05.009
[17] Gil de Lamadrid, J., Argabright, L.N.: Almost periodic measures. Memoirs Am. Math. Soc. 85, 428 (1990) · Zbl 0719.43006
[18] Hof, A.: Uniform distribution and the projection method. In: Patera, J. (ed.) Quasicrystals and Discrete Geometry. Fields Institute Monographs, vol. 10, pp. 201-206. AMS, Providence (1988) · Zbl 0913.28012
[19] Hof, A., On diffraction by aperiodic structures, Commun. Math. Phys., 169, 25-43 (1995) · Zbl 0821.60099 · doi:10.1007/BF02101595
[20] International Union of Crystallography: Report of the executive committee for 1991. Acta Cryst. A48, 922-946 (1992)
[21] Kasjan, S.; Keller, G.; Lemańczyk, M., Dynamics of \({\cal{B} } \)-free sets: a wiew through the window, Int. Math. Res. Not., 2019, 9, 2690-2734 (2019) · Zbl 1436.37016 · doi:10.1093/imrn/rnx196
[22] Keller, G., Irregular \({\cal{B} } \)-free Toeplitz sequences via Besicovitch’s construction of sets of multiples without density, Monatsh Math., 199, 801-816 (2022) · Zbl 1506.37006 · doi:10.1007/s00605-022-01754-6
[23] Keller, G.; Lemańczyk, M.; Richard, C.; Sell, D., On the Garden of Eden theorem for \(\cal{B} \)-free subshifts, Isr. J. Math., 251, 567-594 (2022) · Zbl 1510.37026 · doi:10.1007/s11856-022-2437-9
[24] Keller, G.; Richard, C., Dynamics on the graph of the torus parametrisation, Ergodic Theory Dyn. Syst., 28, 1048-1085 (2018) · Zbl 1388.37051 · doi:10.1017/etds.2016.53
[25] Keller, G.; Richard, C., Periods and factors of weak model sets, Isr. J. Math., 229, 85-132 (2019) · Zbl 07015397 · doi:10.1007/s11856-018-1788-8
[26] Keller, G., Richard, C., Strungaru N.: Spectrum of weak model sets with Borel windows. Can. Math. Bull. (preprint, to appear)(2022). arXiv:2107.08951
[27] Klick, A., Strungaru, N., Tcaciuc A.: On arithmetic progressions in model sets. Discrete Comput. Geom. 67, 930-946 (2022). arXiv:2003.13860 · Zbl 1511.11009
[28] Lagarias, J., Meyer’s concept of quasicrystal and quasiregular sets, Commun. Math. Phys., 179, 365-376 (1996) · Zbl 0858.52010 · doi:10.1007/BF02102593
[29] Lagarias, J.: Mathematical quasicrystals and the problem of diffraction. In: Baake, M., Moody, R.V. (eds.) Directions in Mathematical Quasicrystals. CRM Monograph Series, vol. 13, pp. 61-93. AMS, Providence (2000) · Zbl 1161.52312
[30] Last, Y., Quantum dynamics and decompositions of singular continuous spectra, J. Funct. Anal., 142, 406-445 (1996) · Zbl 0905.47059 · doi:10.1006/jfan.1996.0155
[31] Lenz, D., Richard, C.: Pure point diffraction and cut and project schemes for measures: the smooth case. Math. Z. 256, 347-378 (2007). arXiv:math.DS/0603453 · Zbl 1129.28003
[32] Lenz, D., Spindeler, T., Strungaru, N.: Pure point diffraction and mean, Besicovitch and Weyl almost periodicity. Preprint (2020). arXiv:2006.10821
[33] Lenz, D., Spindeler, T., Strungaru, N.: Pure point spectrum for dynamical systems and mean, Besicovitch and Weyl almost periodicity. Ergodic Theor. Dyn. Syst. (2023). doi:10.1017/etds.2023.14.arXiv:2006.10825
[34] Lenz, D.; Strungaru, N., Pure point spectrum for measurable dynamical systems on locally compact Abelian groups, J. Math. Pures Appl., 92, 323-341 (2009) · Zbl 1178.37008 · doi:10.1016/j.matpur.2009.05.013
[35] Meyer, Y., Algebraic Numbers and Harmonic Analysis (1972), Amsterdam: North-Holland, Amsterdam · Zbl 0267.43001
[36] Meyer, Y., Quasicrystals, almost periodic patterns, mean-periodic functions and irregular sampling, Afr. Diaspora J. Math., 13, 7-45 (2012) · Zbl 1242.52026
[37] Moody, R.V.: Meyer sets and their duals. In: Moody, R.V. (eds.) The Mathematics of Long-Range Aperiodic Order, NATO ASI Series , vol. C489, pp. 403-441. Kluwer, Dordrecht (1997) · Zbl 0880.43008
[38] Moody, R.V.: Model sets: a survey. In: Axel, F., Dénoyer, F., Gazeau, J. P. (eds.) From Quasicrystals to More Complex Systems. EDP Sciences, Les Ulis, and Springer, Berlin, pp. 145-166 (2000). arXiv:math.MG/0002020
[39] Moody, R. V., Strungaru, N.: Almost periodic measures and their Fourier transforms. In: [5], pp. 173-270 (2017) · Zbl 1421.42004
[40] Pedersen, G.: Analysis Now, Graduate Texts in Mathematics. Springer, New York (1989) · Zbl 0668.46002
[41] Reiter, H.; Stegeman, JD, Classical Harmonic Analysis and Locally Compact Groups (2000), Oxford: Clarendon Press, Oxford · Zbl 0965.43001
[42] Richard, C., Strungaru, N.: Pure point diffraction and Poisson summation. Ann. H. Poincaré 18, 3903-3931 (2017). arXiv:1512.00912 · Zbl 1388.78003
[43] Richard, C., Strungaru, N.: A short guide to pure point diffraction in cut-and-project sets. J. Phys. A Math. Theor. 50(15) (2017). arXiv:1606.08831 · Zbl 1366.82058
[44] Rudin, W., Fourier Analysis on Groups (1962), New York: Wiley, New York · Zbl 0107.09603
[45] Schlottmann, M.: Generalized model sets and dynamical systems. In: Baake, M., Moody, R.V. (eds.) Directions in Mathematical Quasicrystals, CRM Monogr. Ser., pp. 143-159. AMS, Providence (2000) · Zbl 0984.37005
[46] Shechtman, D.; Blech, I.; Gratias, D.; Cahn, JW, Metallic phase with long-range orientational order and no translation symmetry, Phys. Rev. Lett., 53, 183-185 (1984) · doi:10.1103/PhysRevLett.53.1951
[47] Sing, B.: Pisot Substitutions and Beyond. Ph.D. thesis (Univ. Bielefeld) (2006) · Zbl 1210.93006
[48] Strungaru, N., Almost periodic measures and long-range order in Meyer sets, Discrete Comput. Geom., 33, 483-505 (2005) · Zbl 1062.43008 · doi:10.1007/s00454-004-1156-9
[49] Strungaru, N., On the Bragg diffraction spectra of a Meyer Set, Can. J. Math., 65, 675-701 (2013) · Zbl 1268.52020 · doi:10.4153/CJM-2012-032-1
[50] Strungaru, N.: On weighted Dirac combs supported inside model sets. J. Phys. A Math. Theor. 47 (2014). arXiv:1309.7947 · Zbl 1316.28001
[51] Strungaru, N.: Almost periodic pure point measures. In: [5], pp. 271-342 (2017). arXiv:1501.00945 · Zbl 1428.28020
[52] Strungaru, N.: On the Fourier analysis of measures with Meyer set support. J. Funct. Anal. 278, 30 (2020). arXiv:1807.03815 · Zbl 1432.43001
[53] Strungaru, N.: Why do Meyer sets diffract?, Extended arxiv version (2021). arXiv:2101.10513
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.