×

Hardy-Sobolev inequalities with distance to the boundary weight functions. (English) Zbl 1526.35188

Summary: In this paper we shall establish some sharp weighted Hardy-Sobolev inequalities whose weights are distance functions to the boundary.

MSC:

35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35J25 Boundary value problems for second-order elliptic equations
35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
26D10 Inequalities involving derivatives and differential and integral operators

References:

[1] Aubin, T., Espaces de Sobolev sur les variétés Riemanniennes. Bull. Sci. Math., 2, 149-173 (1976) · Zbl 0328.46030
[2] Aubin, T., Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom., 4, 573-598 (1976) · Zbl 0371.46011
[3] Badiale, Ma.; Tarantello, G., A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics. Arch. Ration. Mech. Anal., 4, 259-293 (2002) · Zbl 1010.35041
[4] Bliss, G. A., An integral inequality. J. Lond. Math. Soc., 1, 40-46 (1930) · JFM 56.0434.02
[5] Brezis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc., 3, 486-490 (1983) · Zbl 0526.46037
[6] Caffarelli, L.; Gidas, B.; Spruck, J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math., 3, 271-297 (1989) · Zbl 0702.35085
[7] Castro, H., Extremals for Hardy-Sobolev type inequalities with monomial weights. J. Math. Anal. Appl., 2 (2021) · Zbl 1469.46028
[8] Chen, S.; Li, S., Hardy-Sobolev inequalities in half-space and some semilinear elliptic equations with singular coefficients. Nonlinear Anal., 2, 324-348 (2007) · Zbl 1387.35209
[9] Cheng, X.; Wei, L.; Zhang, Y., Estimate, existence and nonexistence of positive solutions of Hardy-Hénon equations. Proc. R. Soc. Edinb., Sect. A, 2, 518-541 (2022) · Zbl 1489.35135
[10] Chou, K. S.; Chu, C. W., On the best constant for a weighted Sobolev-Hardy inequality. J. Lond. Math. Soc., 1, 137-151 (1993) · Zbl 0739.26013
[11] Das, U.; Pinchover, Y.; Devyver, B., On existence of minimizers for weighted \(L^p\)-Hardy inequalities on \(C^{1 , \gamma}\)-domains with compact boundary
[12] Davies, E. B., The Hardy constant. Q. J. Math. Oxf. (2), 417-431 (1995) · Zbl 0857.26005
[13] Dou, J.; Sun, L.; Wang, L.; Zhu, M., Divergent operator with degeneracy and related sharp inequalities. J. Funct. Anal., 2, 109-294 (2022)
[14] Gagliardo, E., Ulteriori proprietà di alcune classi di funzioni in più variabili. Ric. Mat., 24-51 (1959) · Zbl 0199.44701
[15] Gazzini, M.; Musina, R., On a Sobolev-type inequality related to the weighted p-Laplace operator. J. Math. Anal. Appl., 99-111 (2009) · Zbl 1173.46015
[16] Ghoussoub, N.; Robert, F., The effect of curvature on the best constant in the Hardy-Sobolev inequalities. Geom. Funct. Anal., 6, 1201-1245 (2006) · Zbl 1232.35044
[17] Ghoussoub, N.; Yuan, C., Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Am. Math. Soc., 12, 5703-5743 (2000) · Zbl 0956.35056
[18] Gidas, B.; Ni, W.; Nirenberg, L., Symmetry and related properties via the maximum principle. Commun. Math. Phys., 3, 209-243 (1979) · Zbl 0425.35020
[19] Hardy, G. H.; Littlewood, J. E., Notes on the theory of series (XII): on certain inequalities connected with calculus of variations. J. Lond. Math. Soc., 34-39 (1930) · JFM 56.0434.01
[20] Hardy, G. H.; Littlewood, J. E.; Polya, G., Inequalities (1934), Cambridge University Press: Cambridge University Press Cambridge · JFM 60.0169.01
[21] Hebey, E.; Vaugon, M., Meilleures constantes dans le thréorème d’inclusion de Sobolev. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 57-93 (1996) · Zbl 0849.53035
[22] Lamberti, P. D.; Pinchover, Y., \( L^p\) Hardy inequality on \(C^{1 , \gamma}\) domains. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 3, 1135-1159 (2019) · Zbl 1429.35012
[23] Lee, J. M.; Parker, T. H., The Yamabe problem. Bull. Am. Math. Soc. (N.S.), 1, 37-91 (1987) · Zbl 0633.53062
[24] Lewis, R.; Li, J.; Li, Y. Y., A geometric characterization of a sharp Hardy inequality. J. Funct. Anal., 7, 3159-3185 (2012) · Zbl 1243.26008
[25] Li, Y. Y.; Zhu, M., Uniqueness theorems through the method of moving spheres. Duke Math. J., 383-417 (1995) · Zbl 0846.35050
[26] Li, Y. Y.; Zhu, M., Sharp Sobolev trace inequality on Riemannian manifolds with boundary. Commun. Pure Appl. Math., 449-487 (1997) · Zbl 0869.58054
[27] Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math., 349-374 (1983) · Zbl 0527.42011
[28] Lions, P. L., The concentration-compactness principle in the calculus of variations. The limit case I. Rev. Mat. Iberoam., 145-201 (1985) · Zbl 0704.49005
[29] Lions, P. L., The concentration-compactness principle in the calculus of variations. The limit case II. Rev. Mat. Iberoam., 45-121 (1985) · Zbl 0704.49006
[30] Marcus, M.; Mizel, V.; Pinchover, Y., On the best constant for Hardy’s inequality in \(R^n\). Trans. Am. Math. Soc., 8, 3237-3255 (1998) · Zbl 0917.26016
[31] Matskewich, T.; Sobolevskii, P. E., The best possible constant in generalized Hardy’s inequality for convex domain in \(\mathbb{R}^n\). Nonlinear Anal., 1601-1610 (1997) · Zbl 0876.46025
[32] Maz’ya, V., Sobolev Spaces (2011), Springer
[33] Nirenberg, L., On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3), 115-162 (1959) · Zbl 0088.07601
[34] Opic, P.; Kufner, A., Hardy-Type Inequalities. Pitman Research Notes in Mathematics Series (1990), Longman Scientific & Technical: Longman Scientific & Technical Harlow · Zbl 0698.26007
[35] Rosen, G., Minimum value for c in the Sobolev inequality \(\| \phi^3 \| \leq c \| \operatorname{\nabla} \phi \|^3\). SIAM J. Appl. Math., 30-32 (1971) · Zbl 0201.38704
[36] Talenti, G., Best constant in Sobolev inequality. Ann. Mat. Pura Appl., 353-372 (1976) · Zbl 0353.46018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.