×

Travelling waves and heteroclinic networks in models of spatially-extended cyclic competition. (English) Zbl 1526.34029

Summary: Dynamical systems containing heteroclinic cycles and networks can be invoked as models of intransitive competition between three or more species. When populations are assumed to be well-mixed, a system of ordinary differential equations (ODEs) describes the interaction model. Spatially extending these equations with diffusion terms creates a system of partial differential equations which captures both the spatial distribution and mobility of species. In one spatial dimension, travelling wave solutions can be observed, which correspond to periodic orbits in ODEs that describe the system in a steady-state travelling frame of reference. These new ODEs also contain a heteroclinic structure. For three species in cyclic competition, the topology of the heteroclinic cycle in the well-mixed model is preserved in the steady-state travelling frame of reference. We demonstrate that with four species, the heteroclinic cycle which exists in the well-mixed system becomes a heteroclinic network in the travelling frame of reference, with additional heteroclinic orbits connecting equilibria not connected in the original cycle. We find new types of travelling waves which are created in symmetry-breaking bifurcations and destroyed in an orbit flip bifurcation with a cycle between only two species. These new cycles explain the existence of ‘defensive alliances’ observed in previous numerical experiments. We further describe the structure of the heteroclinic network for any number of species, and we conjecture how these results may generalise to systems of any arbitrary number of species in cyclic competition.
{© 2023 IOP Publishing Ltd & London Mathematical Society}

MSC:

34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
35C07 Traveling wave solutions
34C25 Periodic solutions to ordinary differential equations
34C14 Symmetries, invariants of ordinary differential equations

Software:

OEIS

References:

[1] May, R. M.; Leonard, W. J., Nonlinear aspects of competition between three species, SIAM J. Appl. Math., 29, 243-53 (1975) · Zbl 0314.92008 · doi:10.1137/0129022
[2] Guckenheimer, J.; Holmes, P., Structurally stable heteroclinic cycles, Math. Proc. Camb. Phil. Soc., 103, 189-92 (1988) · Zbl 0645.58022 · doi:10.1017/S0305004100064732
[3] Krupa, M.; Melbourne, I., Asymptotic stability of heteroclinic cycles in systems with symmetry II, Proc. R. Soc. A, 134, 1177-97 (2004) · Zbl 1073.37025 · doi:10.1017/S0308210500003693
[4] Busse, F. H.; Heikes, K. E., Convection in a rotating layer: a simple case of turbulence, Science, 208, 173-5 (1980) · doi:10.1126/science.208.4440.173
[5] Busse, F. H.; Clever, R. M.; Müller, U.; Roessner, K. G.; Schmidt, B., Nonstationary convection in a rotating system, Recent Developments in Theoretical and Experimental Fluid Mechanics (1979), Springer · Zbl 0411.76060
[6] Szolnoki, A.; Mobilia, M.; Jiang, L. L.; Szczesny, B.; Rucklidge, A. M.; Perc, M., Cyclic dominance in evolutionary games: a review, J. R. Soc. Interface, 11 (2014) · doi:10.1098/rsif.2014.0735
[7] Postlethwaite, C. M.; Rucklidge, A. M., A trio of heteroclinic bifurcations arising from a model of spatially-extended Rock-Paper-Scissors, Nonlinearity, 32, 1375-407 (2019) · Zbl 1412.37055 · doi:10.1088/1361-6544/aaf530
[8] Postlethwaite, C. M.; Rucklidge, A. M., Spirals and heteroclinic cycles in a spatially extended Rock-Paper-Scissors model of cyclic dominance, Europhys. Lett., 117 (2017) · doi:10.1209/0295-5075/117/48006
[9] Cox, S. M.; Matthews, P. C., Exponential time differencing for stiff systems, J. Comput. Phys., 176, 430-55 (2002) · Zbl 1005.65069 · doi:10.1006/jcph.2002.6995
[10] Bayliss, A.; Nepomnyashchy, A. A.; Volpert, V. A., Beyond Rock-Paper-Scissors systems—deterministic models of cyclic ecological systems with more than three species, Physica D, 411 (2020) · Zbl 1486.92311 · doi:10.1016/j.physd.2020.132585
[11] Dobramysl, U.; Mobilia, M.; Pleimling, M.; Täuber, U. C., Stochastic population dynamics in spatially extended predator-prey systems, J. Phys. A: Math. Theor., 51 (2018) · Zbl 1385.92041 · doi:10.1088/1751-8121/aa95c7
[12] Durney, C. H.; Case, S. O.; Pleimling, M.; Zia, R. K P., Stochastic evolution of four species in cyclic competition, J. Stat. Mech. (2012) · doi:10.1088/1742-5468/2012/06/P06014
[13] Roman, A.; Konrad, D.; Pleimling, M., Cyclic competition of four species: domains and interfaces, J. Stat. Mech. (2012) · doi:10.1088/1742-5468/2012/07/P07014
[14] Szabó, G.; Ariel Sznaider, G., Phase transition and selection in a four-species cyclic predator-prey model, Phys. Rev. E, 69 (2004) · doi:10.1103/PhysRevE.69.031911
[15] Szabó, G.; Szolnoki, A.; Ariel Sznaider, G., Segregation process and phase transition in cyclic predator-prey models with an even number of species, Phys. Rev. E, 76 (2007) · doi:10.1103/PhysRevE.76.051921
[16] Hasan, C. R.; Osinga, H. M.; Postlethwaite, C. M.; Rucklidge, A. M., Spatiotemporal stability of periodic travelling waves in a heteroclinic-cycle model, Nonlinearity, 34, 5576-98 (2021) · Zbl 1475.37085 · doi:10.1088/1361-6544/ac0126
[17] Postlethwaite, C. M., A new mechanism for stability loss from a heteroclinic cycle, Dyn. Syst., 25, 305-22 (2010) · Zbl 1204.37066 · doi:10.1080/14689367.2010.495708
[18] Kirk, V.; Lane, E.; Postlethwaite, C. M.; Rucklidge, A. M.; Silber, M., A mechanism for switching near a heteroclinic network, Dyn. Syst., 25, 323-49 (2010) · Zbl 1204.37023 · doi:10.1080/14689361003779134
[19] Kirk, V.; Silber, M., A competition between heteroclinic cycles, Nonlinearity, 7, 1605-21 (1994) · Zbl 0815.34033 · doi:10.1088/0951-7715/7/6/005
[20] Brannath, W., Heteroclinic networks on the tetrahedron, Nonlinearity, 7, 1367-84 (1994) · Zbl 0806.34040 · doi:10.1088/0951-7715/7/5/006
[21] Field, M.; Swift, J. W., Stationary bifurcation to limit cycles and heteroclinic cycles, Nonlinearity, 4, 1001-43 (1991) · Zbl 0744.58056 · doi:10.1088/0951-7715/4/4/001
[22] Chossat, P.; Krupa, M.; Melbourne, I.; Scheel, A., Transverse bifurcations of homoclinic cycles, Physica D, 29, 85-100 (1997) · Zbl 0892.34044 · doi:10.1016/S0167-2789(96)00186-8
[23] Krupa, M.; Melbourne, I., Asymptotic stability of heteroclinic cycles in systems with symmetry I, Ergod. Theor. Dynam. Syst., 15, 121-47 (1995) · Zbl 0818.58025 · doi:10.1017/S0143385700008270
[24] Lohse, A., Stability of heteroclinic cycles in transverse bifurcations, Physica D, 310, 95-103 (2015) · Zbl 1364.37055 · doi:10.1016/j.physd.2015.08.005
[25] Melbourne, I., An example of a nonasymptotically stable attractor, Nonlinearity, 4, 835-44 (1991) · Zbl 0737.58043 · doi:10.1088/0951-7715/4/3/010
[26] Kirk, V.; Postlethwaite, C. M.; Rucklidge, A. M., Resonance bifurcations of robust heteroclinic networks, SIAM J. Appl. Dyn. Syst., 11, 1360-401 (2012) · Zbl 1263.37039 · doi:10.1137/120864684
[27] Postlethwaite, C. M.; Rucklidge, A. M., Stability of cycling behaviour near a heteroclinic network model of Rock-Paper-Scissors-Lizard-Spock, Nonlinearity, 35, 1702-33 (2022) · Zbl 1495.37020 · doi:10.1088/1361-6544/ac3560
[28] Kokubu, H.; Komuro, M.; Oka, H., Multiple homoclinic bifurcations from orbit-flip I: successive homoclinic doublings, Int. J. Bifurcation Chaos, 06, 833-50 (1996) · Zbl 0884.34047 · doi:10.1142/S0218127496000461
[29] Homburg, A. J.; Krauskopf, B., Resonant homoclinic flip bifurcations, J. Dyn. Differ. Equ., 12, 807-50 (2000) · Zbl 0990.37038 · doi:10.1023/A:1009046621861
[30] Belyakov, L. A., Bifurcation of systems with homoclinic curve of a saddle-focus with saddle quantity zero, Math. Notes Acad. Sci. USSR, 36, 838-43 (1984) · Zbl 0598.34035 · doi:10.1007/BF01139930
[31] Devaney, R. L., Homoclinic orbits in Hamiltonian systems, J. Differ. Equ., 21, 431-8 (1976) · Zbl 0343.58005 · doi:10.1016/0022-0396(76)90130-3
[32] Nee Chow, S.; Deng, B.; Fiedler, B., Homoclinic bifurcation at resonant eigenvalues, J. Dyn. Differ. Equ., 2, 177-244 (1990) · Zbl 0703.34050 · doi:10.1007/BF01057418
[33] Doedel, E JFairgrieve, T FSandstede, BChampneys, A RKuznetsov, Y AWang, X2007AUTO-07P: continuation and bifurcation software for ordinary differential equationsTechnical reportHeriot-Watt University
[34] Olson, B. J.; Shaw, S. W.; Shi, C.; Pierre, C.; Parker, R. G., Circulant matrices and their application to vibration analysis, Appl. Mech. Rev., 66 (2014) · doi:10.1115/1.4027722
[35] Version 9.10.0 (R2021a) (2010), The MathWorks Inc.
[36] Hofbauer, J.; Brunovský, P.; Medved, M., Heteroclinic cycles in ecological differential equationsm, vol 4, pp 105-16 (1994), Tatra Mountains Mathematical Publications · Zbl 0811.34035
[37] Postlethwaite, C. M.; Dawes, J. H P., Resonance bifurcations from robust homoclinic cycles, Nonlinearity, 23, 621-42 (2010) · Zbl 1194.34086 · doi:10.1088/0951-7715/23/3/011
[38] OEIS Foundation Inc.2022Entry A006579 in the On-Line Encyclopedia of Integer Sequences(available at: https://oeis.org/A006579)
[39] Sato, K.; Yoshida, N.; Konno, N., Parity law for population dynamics of N-species with cyclic advantage competitions, Appl. Math. Comput., 126, 255-70 (2002) · Zbl 1017.92026 · doi:10.1016/S0096-3003(00)00155-7
[40] Postlethwaite, C. M.; Dawes, J. H P., Regular and irregular cycling near a heteroclinic network, Nonlinearity, 18, 1477-509 (2005) · Zbl 1181.37025 · doi:10.1088/0951-7715/18/4/004
[41] Podvigina, O., Behaviour of trajectories near a two-cycle heteroclinic network (2021)
[42] Castro, S. B S. D.; Lohse, A., Switching in heteroclinic networks, SIAM J. Appl. Dyn. Syst., 15, 1085-103 (2016) · Zbl 1343.34105 · doi:10.1137/15M1042176
[43] Homburg, A. J.; Knobloch, J., Switching homoclinic networks, Dyn. Syst., 25, 351-8 (2010) · Zbl 1204.37028 · doi:10.1080/14689361003769770
[44] Aguiar, M. A D.; Castro, S. B S. D.; Labouriau, I. S., Dynamics near a heteroclinic network, Nonlinearity, 18, 391-414 (2004) · Zbl 1109.37020 · doi:10.1088/0951-7715/18/1/019
[45] Rodrigues, A. A P.; Labouriau, I. S., Spiralling dynamics near heteroclinic networks, Physica D, 268, 34-49 (2014) · Zbl 1286.37033 · doi:10.1016/j.physd.2013.10.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.