×

The Krein-von Neumann extension revisited. (English) Zbl 1526.34022

The paper deals with the Sturm-Liouville operators associated with the general, three-coefficient differential expression \[ \frac{1}{r(x)} \Bigl[ -\frac{d}{dx} p(x) \frac{d}{dx} + q(x)\Bigr]\text{ for a.e. }x\in (a,b) \subseteq \mathbb R, \] where the functions \(\frac{1}{p}\), \(q\), and \(r\) belong to\(L^1_{\mathrm{loc}}((a,b); dx)\), \(p\) and \(r\) are positive, and \(q\) is real-valued. The minimal operator \(T_{\min}\) is assumed in addition to be strictly positive. The authors obtain an explicit description of the Krein-von Neumann extensions of \(T_{\min}\) in terms of generalized boundary values. As examples, a generalized Bessel operator, a singular operator relevant in the context of acoustic black holes, and the Jacobi operator are considered.

MSC:

34B24 Sturm-Liouville theory
34B09 Boundary eigenvalue problems for ordinary differential equations
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
34B20 Weyl theory and its generalizations for ordinary differential equations
34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.)
47A57 Linear operator methods in interpolation, moment and extension problems

Software:

DLMF

References:

[1] Faris, WG., Self-adjoint operators, 433 (1975), Berlin: Springer, Berlin · Zbl 0317.47016
[2] Kato, T., Perturbation theory for linear operators (1980), Berlin: Springer, Berlin · Zbl 0435.47001
[3] Krein, MG., The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I, Mat Sbornik, 20, 431-495 (1947) · Zbl 0029.14103
[4] Alonso, A.; Simon, B., The Birman-Krein-Vishik theory of selfadjoint extensions of semibounded operators, J Operator Theory, 4, 251-270 (1980) · Zbl 0467.47017
[5] Arlinski, Yu. M.; Tsekanovski, ER., The von Neumann problem for nonnegative symmetric operators, Integr Equ Oper Theory, 51, 319-356 (2005) · Zbl 1082.47018
[6] von Neumann, J., Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Math Ann, 102, 49-131 (192930) · JFM 55.0824.02
[7] Krein, MG., The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. II, Mat Sbornik, 21, 365-404 (1947) · Zbl 0030.39401
[8] Gesztesy, F.; Littlejohn, LL; Nichols, R., On self-adjoint boundary conditions for singular Sturm-Liouville operators bounded from below, J Differ Equ, 269, 6448-6491 (2020) · Zbl 1458.34143
[9] Gesztesy, F, Zinchenko, M.Sturm-Liouville Operators, Their Spectral Theory, and Some Applications. in preparation.
[10] Leighton, W.; Morse, M., Singular quadratic functionals, Trans Am Math Soc, 40, 252-286 (1936) · JFM 62.0577.02
[11] Rellich, F., Die zulässigen Randbedingungen bei den singulären Eigenwertproblemen der mathematischen Physik. (Gewöhnliche Differentialgleichungen zweiter Ordnung.), Math Z, 49, 702-723 (194344) · Zbl 0028.40803
[12] Rellich, F., Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung, Math Ann, 122, 343-368 (1951) · Zbl 0044.31201
[13] Hartman, P.; Wintner, A., On the assignment of asymptotic values for the solutions of linear differential equations of second order, Am J Math, 77, 475-483 (1955) · Zbl 0064.33205
[14] Clark, S, Gesztesy, F, Nichols, R. Principal solutions revisited. in Stochastic and Infinite Dimensional Analysis. C. C. Bernido, M. V. Carpio-Bernido, M. Grothaus, T. Kuna, M. J. Oliveira, and J. L. da Silva (eds.), Trends in Mathematics, Birkhäuser, Springer, pp. 85-117. 2016. · Zbl 1508.34022
[15] Dunford, N.; Schwartz, JT., Linear operators. part II: spectral theory (1988), New York: Wiley Interscience, New York
[16] Hartman, P., Ordinary differential equations (2002), Philadelphia: SIAM, Philadelphia · Zbl 0125.32102
[17] Niessen, H-D; Zettl, A., Singular Sturm-Liouville problems: the Friedrichs extension and comparison of eigenvalues, Proc London Math Soc (3), 64, 545-578 (1992) · Zbl 0768.34015
[18] Zettl, A., Sturm-Liouville theory, 121 (2005), Providence, RI: Amer. Math. Soc., Providence, RI · Zbl 1074.34030
[19] Kalf, H., A characterization of the Friedrichs extension of Sturm-Liouville operators, J London Math Soc (2), 17, 511-521 (1978) · Zbl 0406.34029
[20] Rosenberger, R., A new characterization of the Friedrichs extension of semibounded Sturm-Liouville operators, J London Math Soc (2), 31, 501-510 (1985) · Zbl 0615.34019
[21] Akhiezer, NI; Glazman, IM., Theory of linear operators in Hilbert space, Vol. II (1981), Boston: Pitman, Boston · Zbl 0467.47001
[22] Coddington, EA; Levinson, N., Theory of ordinary differential equations (1985), Malabar, FL: Krieger Publ., Malabar, FL
[23] Jörgens, K.; Rellich, F., Eigenwerttheorie Gewöhnlicher Differentialgleichungen (1976), Berlin: Springer-Verlag, Berlin · Zbl 0347.34013
[24] Naimark, MA.Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space. Transl. by E. R. Dawson, Engl. translation edited by W. N. Everitt, Ungar Publishing, New York. 1968. · Zbl 0227.34020
[25] Pearson, DB., Quantum scattering and spectral theory (1988), London: Academic Press, London · Zbl 0673.47011
[26] Teschl, G.Mathematical Methods in Quantum Mechanics. With Applications to Schrödinger Operators, 2nd ed., Graduate Studies in Math., Vol. 157, Amer. Math. Soc., RI. 2014. · Zbl 1342.81003
[27] Weidmann, J., Linear operators in Hilbert spaces, 68 (1980), New York: Springer, New York · Zbl 0434.47001
[28] Weidmann, J., Lineare Operatoren in Hilberträumen. Teil II: Anwendungen (2003), Stuttgart: Teubner, Stuttgart · Zbl 0344.47001
[29] Ando, T.; Nishio, K., Positive selfadjoint extensions of positive symmetric operators, Tohoku Math J (2), 22, 65-75 (1970) · Zbl 0192.47703
[30] Arlinskii, Yu.M., Hassi, S., Sebestyén, Z., de Snoo, H.S.V.: ‘On the class of extremal extensions of a nonnegative operator, in Recent Advances in Operator Theory and Related Topics. L. Kérchy, C. Foias, I. Gohberg, and H. Langer (eds.), Operator Theory: Advances and Applications, Vol. 127, Birkhäuser, Basel, 2001, pp. 41-81. · Zbl 0996.47029
[31] Arlinski, Yu., Tsekanovski, E.: ‘M.Kren’s research on semibounded operators, its contemporary developments, and applications’, in Adamyan, V., Berezansky, Y.M., Gohberg, I., Gorbachuk, M.L., Gorbachuk, V., Kochubei, A.N., Langer, H., Popov, G. (Eds.): ‘Modern analysis and applications. the Mark Krein centenary conference. Operator theory: advances and applications’, vol. 1 (Birkhäuser, Basel, 2009), pp. 65-112. · Zbl 1201.47026
[32] Ashbaugh, MS; Gesztesy, F.; Mitrea, M.; Teschl, G., Spectral theory for perturbed Krein Laplacians in nonsmooth domains, Adv Math, 223, 1372-1467 (2010) · Zbl 1191.35188
[33] Ashbaugh, MS; Gesztesy, F.; Mitrea, M.; Shterenberg, R.; Teschl, G., The Krein-von Neumann extension and its connection to an abstract buckling problem, Math Nachr, 283, 165-179 (2010) · Zbl 1183.35100
[34] Ashbaugh, MS, Gesztesy, F, Mitrea, M, Shterenberg, R, Teschl, G.A survey on the Krein-von Neumann extension, the corresponding abstract buckling problem, and Weyl-type spectral asymptotics for perturbed Krein Laplacians in non smooth domains. in Mathematical Physics, Spectral Theory and Stochastic Analysis, M. Demuth and W. Kirsch (eds.), Operator Theory: Advances and Applications, Vol. 232, Birkhäuser, Springer, Basel, pp. 1-106. 2013. · Zbl 1283.47001
[35] Ashbaugh, MS; Gesztesy, F.; Laptev, A.; Mitrea, M.; Sukhtaiev, S., A bound for the eigenvalue counting function for Krein-von Neumann and Friedrichs extensions, Adv Math, 304, 1108-1155 (2017) · Zbl 1362.35197
[36] Behrndt, J.; Hassi, S.; de Snoo, H., Boundary value problems, Weyl functions, and differential operators, 105 (2020), Springer: Birkhäuser, Springer · Zbl 1457.47001
[37] Sh. Birman, M., On the theory of self-adjoint extensions of positive definite operators, Mat Sbornik, 38, 431-450 (1956) · Zbl 0070.12102
[38] Derkach, VA; Malamud, MM., Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J Funct Anal, 95, 1-95 (1991) · Zbl 0748.47004
[39] Derkach, VA; Malamud, MM., The extension theory of Hermitian operators and the moment problem, J Math Sci, 73, 141-242 (1995) · Zbl 0848.47004
[40] Grubb, G., Spectral asymptotics for the “soft” selfadjoint extension of a symmetric elliptic differential operator, J Oper Theory, 10, 9-20 (1983) · Zbl 0559.47035
[41] Grubb, G., Distributions and operators, 252 (2009), New York: Springer, New York · Zbl 1171.47001
[42] Hassi, S.; Malamud, M.; de Snoo, H., On Kren’s extension theory of nonnegative operators, Math Nachr, 274-275, 40-73 (2004) · Zbl 1076.47008
[43] Hassi, S.; Sandovici, A.; de Snoo, H.; Winkler, H., A general factorization approach to the extension theory of nonnegative operators and relations, J Operator Theory, 58, 351-386 (2007) · Zbl 1164.47003
[44] Nenciu, G., Applications of the Kren resolvent formula to the theory of self-adjoint extensions of positive symmetric operators, J Operator Theory, 10, 209-218 (1983) · Zbl 0561.47005
[45] Prokaj, V.; Sebestyén, Z., On extremal positive operator extensions, Acta Sci Math (Szeged), 62, 485-491 (1996) · Zbl 0881.47002
[46] Sebestyén, Z.; Sikolya, E., On Krein-von Neumann and Friedrichs extensions, Acta Sci Math (Szeged), 69, 323-336 (2003) · Zbl 1050.47011
[47] Simon, B., The classical moment problem as a self-adjoint finite difference operator, Adv Math, 137, 82-203 (1998) · Zbl 0910.44004
[48] Skau, CF., Positive self-adjoint extensions of operators affiliated with a von Neumann algebra, Math Scand, 44, 171-195 (1979) · Zbl 0414.46041
[49] Storozh, OG., On the hard and soft extensions of a nonnegative operator, J Math Sci, 79, 1378-1380 (1996)
[50] traus, AV., On extensions of a semibounded operator, Sov Math Dokl, 14, 1075-1079 (1973) · Zbl 0297.47003
[51] Tsekanovskii, ER., Friedrichs and Krein extensions of positive operators and holomorphic contraction semigroups, Funct Anal Appl, 15, 308-309 (1981) · Zbl 0479.47023
[52] Viik, ML., On general boundary problems for elliptic differential equations, Trudy Moskov Mat Obsc, 1, 187-246 (1952) · Zbl 0047.09502
[53] Gesztesy, F, Kalton, N, Makarov, K, Tsekanovskii, E.Some applications of operator-valued Herglotz functions. in Operator Theory, System Theory and Related Topics. The Moshe Livsic Anniversary Volume, D. Alpay and V. Vinnikov (eds.), Operator Theory: Advances and Applications, Vol. 123, Birkhäuser, Basel, pp. 271-321. 2001. · Zbl 0991.30020
[54] Clark, S.; Gesztesy, F.; Nichols, R.; Zinchenko, M., Boundary data maps and Krein’s resolvent formula for Sturm-Liouville operators on a finite interval, Oper Matrices, 8, 1-71 (2014) · Zbl 1311.34037
[55] Gesztesy, F, Nichols, R, Stanfill, J.A Survey of Some Norm Inequalities. Comp Anal Oper Theo. 2021;15(23). · Zbl 1514.47015
[56] Kamke, E., Differentialgleichungen. Lösungsmethoden und Lösungen. gewöhnliche Differentialgleichungen (1961), Leipzig: Akademische Verlagsgesellschaft, Leipzig · Zbl 0096.28204
[57] Abramowitz, M.; Stegun, IA., Handbook of mathematical functions (1972), New York: Dover, New York · Zbl 0543.33001
[58] Belinskiy, BP, Hinton, DB, Nichols, R. Singular Sturm-Liouville operators with extreme properties that generate black holes. Stud Appl Math. 2021:1-29. DOI:. · Zbl 1487.34083
[59] Gesztesy, F, Littlejohn, LL, Piorkowski, M, Stanfill, J.The Jacobi operator and its Weyl-Titchmarsh-Kodaira m-functions. preprint. 2020.
[60] Bush, M, Frymark, D, Liaw, C.Singular boundary conditions for Sturm-Liouville operators via perturbation theory. preprint. 2020.
[61] Everitt, WN.A catalogue of Sturm-Liouville differential equations. in Sturm-Liouville Theory: Past and Present. W. O. Amrein, A. M. Hinz, D. B. Pearson (eds.), Birkhäuser, Basel, pp. 271-331. 2005. · Zbl 1088.34017
[62] Everitt, WN; Kwon, KH; Littlejohn, LL; Wellman, R.; Yoon, GJ., Jacobi Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression, J Comput Appl Math, 208, 29-56 (2007) · Zbl 1119.33009
[63] Frymark, D., Boundary triples and Weyl m-functions for powers of the Jacobi differential operator, J Differ Equ, 269, 7931-7974 (2020) · Zbl 1493.34080
[64] Grünewald, U., Jacobische Differentialoperatoren, Math Nachr, 63, 239-253 (1974) · Zbl 0325.34026
[65] Koornwinder, T.; Kostenko, A.; Teschl, G., Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator, Adv Math, 333, 796-821 (2018) · Zbl 1405.33012
[66] Kuijlaars, A.; Martinez-Finkelshtein, A.; Orive, R., Orthogonality of Jacobi polynomials with general parameters, Electron Trans Numer Anal, 19, 1-17 (2005) · Zbl 1075.33005
[67] Olver, FW, Lozier, DW, Boisvert, RF, Clark, CW.NIST Handbook of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.26 of 2020-03-15. · Zbl 1198.00002
[68] Szeg, G.Orthogonal Polynomials. 4th edn, Colloquium Publications, Vol. 23, Amer. Math. Soc., Providence, RI. 1975. · Zbl 0305.42011
[69] Olver, FWJ, Lozier, DW, Boisvert, RF, Clark, CW (eds.) NIST Handbook of Mathematical Functions. National Institute of Standards and Technology (NIST), U.S. Dept. of Commerce, and Cambridge Univ. Press. 2010. · Zbl 1198.00002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.