×

Energy-based finite-time stabilization and \(H_\infty\) control of stochastic nonlinear systems. (English) Zbl 1525.93395

Summary: The finite-time stabilization and \(H_\infty\) control of stochastic nonlinear systems was investigated in this article. First, we discussed the relationship between the finite-time stability and the dissipation property by transforming the stochastic nonlinear system to its equivalent Hamiltonian formulation. It was showed that the stochastic dissipative Hamiltonian system is finite-time stable in probability if the system is strictly dissipative and the Hamiltonian function possessed some special forms. Then, by the energy shaping and damping injection technique, we reformulate the internal structure matrix and the Hamiltonian function to construct a finite-time stabilization controller for stochastic nonlinear systems. Moreover, for uncertain stochastic nonlinear systems, an \(H_\infty\) finite-time robust controller was put forward by utilizing the Hamiltonian function to construct a solution for the Hamiltonian-Jacobi Inequality. Finally, we proposed a finite-time stabilization and a finite-time \(H_\infty\) controller for the inverted cart-pendulum system to verify the effectiveness of the proposed method.
{© 2020 John Wiley & Sons Ltd}

MSC:

93D40 Finite-time stability
93B36 \(H^\infty\)-control
93E15 Stochastic stability in control theory
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] HuangX, LinW, YangB. Global finite‐time stabilization of a class of uncertain nonlinear systems. Automatica. 2005;41(5):881‐888. https://doi.org/10.1016/j.automatica.2004.11.036. · Zbl 1098.93032 · doi:10.1016/j.automatica.2004.11.036
[2] LiJ, QianC. Global finite‐time stabilization by dynamic output feedback for a class of continuous nonlinear systems. IEEE Trans Autom Control. 2006;51(5):879‐884. https://doi.org/10.1109/tac.2006.874991. · Zbl 1366.93507 · doi:10.1109/tac.2006.874991
[3] YuS, YuX, ShirinzadehB, ManZ. Continuous finite‐time control for robotic manipulators with terminal sliding mode. Automatica. 2005;41(11):1957‐1964. https://doi.org/10.1016/j.automatica.2005.07.00. · Zbl 1125.93423 · doi:10.1016/j.automatica.2005.07.00
[4] DingS, LiS, LiQ. Stability analysis for a second‐order continuous finite‐time control system subject to a disturbance. J Control Theory Appl. 2009;7(3):271‐276. https://doi.org/10.1007/s11768‐009‐8015‐4. · doi:10.1007/s11768‐009‐8015‐4
[5] HongY. Finite‐time stabilization and stabilizability of a class of controllable systems. Syst Control Lett. 2002;46(4):231‐236. https://doi.org/10.1016/s0167‐6911(02)00119‐6. · Zbl 0994.93049 · doi:10.1016/s0167‐6911(02)00119‐6
[6] HaimoVT. Finite‐time controllers. SIAM J Control Optim. 1986;24:760‐770. · Zbl 0603.93005
[7] BhatSP, BernsteinDS. Continuous finite‐time stabilization of the translational and rotational double integrators. IEEE Trans Autom Control. 1998;43(5):678‐682. https://doi.org/10.1109/9.668834. · Zbl 0925.93821 · doi:10.1109/9.668834
[8] HongY, WangJ, ChengD. Adaptive finite‐time control of nonlinear systems with parametric uncertainty. IEEE Trans Autom Control. 2006;51(5):858‐862. https://doi.org/10.1109/TAC.2006.875006. · Zbl 1366.93290 · doi:10.1109/TAC.2006.875006
[9] ZhaoZ, JiangZ. Semi‐global finite‐time output‐feedback stabilization with an application to robotics. IEEE Trans Ind Electron. 2019;66(4):3148‐3156. https://doi.org/10.1109/tie.2018.2847630. · doi:10.1109/tie.2018.2847630
[10] LiY, YD, SunZ. Robust finite time control algorithm for satellite attitude control. Aerosp Sci Technol. 2017;68:46‐57. https://doi.org/10.1016/j.ast.2017.05.014. · doi:10.1016/j.ast.2017.05.014
[11] LiZ, JiH. Finite‐time consensus and tracking control of a class of nonlinear multi‐agent systems. IEEE Trans Autom Control. 2018;63(12):4413‐4420. https://doi.org/10.1109/TAC.2018.2845677. · Zbl 1423.93024 · doi:10.1109/TAC.2018.2845677
[12] SunG, MaZ. Practical tracking control of linear motor with adaptive fractional order terminal sliding mode control. IEEE/ASME Trans Mechatron. 2017;22(6):2643‐2653. https://doi.org/10.1109/TMECH.2017.2766279. · doi:10.1109/TMECH.2017.2766279
[13] SunY, WuX, BaiL, et al. Finite‐time synchronization control and parameter identification of uncertain permanent magnet synchronous motor. Neurocomputing. 2016;207:511‐518. https://doi.org/10.1109/TAC.2018.2845677. · Zbl 1423.93024 · doi:10.1109/TAC.2018.2845677
[14] GaoY, XiaoF, LiuJ, et al. Distributed soft fault detection for interval type‐2 fuzzy‐model‐based stochastic systems with wireless sensor networks. IEEE Trans Ind Inform. 2019;15(1):334‐347.
[15] YinJ, KhooS, ManZ. Finite‐time stability and instability of stochastic nonlinear systems. Automatica. 2011;47(12):2671‐2677. https://doi.org/10.1016/j.automatica.2011.08.050. · Zbl 1235.93254 · doi:10.1016/j.automatica.2011.08.050
[16] YinJ, KhooS. Continuous finite‐time state feedback stabilizers for some nonlinear stochastic systems. Int J Robust Nonlinear Control. 2015;25(11):1581‐1600. https://doi.org/10.1002/rnc.3161. · Zbl 1328.93211 · doi:10.1002/rnc.3161
[17] YuX, YinJ, KhooS. Generalized Lyapunov criteria on finite‐time stability of stochastic nonlinear systems. Automatica. 2019;107:183‐189. https://doi.org/10.1016/j.automatica.2019.05.048. · Zbl 1429.93411 · doi:10.1016/j.automatica.2019.05.048
[18] KhooS, YinJ, ManZ. Finite‐time stabilization of stochastic nonlinear systems in strict‐feedback form. Automatica. 2013;49(5):1403‐1410. https://doi.org/10.1016/j.automatica.2013.01.054. · Zbl 1319.93078 · doi:10.1016/j.automatica.2013.01.054
[19] GaoF, YuanF. Finite‐time stabilization of stochastic nonholonomic systems and its application to mobile robot. Abstract Appl Anal. 2012;361269:1‐18. https://doi.org/10.1155/2012/361269. · Zbl 1253.93087 · doi:10.1155/2012/361269
[20] ZhangK, ZhangXH. Finite‐time stabilisation for high‐order nonlinear systems with low‐order and high‐order nonlinearities. Int J Control. 2015;88(8):1576‐1585. https://doi.org/10.1080/00207179.2015.1011697. · Zbl 1337.93065 · doi:10.1080/00207179.2015.1011697
[21] JiangMM, XieXJ, ZhangK. Finite‐time stabilization of stochastic high‐order nonlinear systems with FT‐SISS inverse dynamics. IEEE Trans Autom Control. 2019;64(1):313‐320. https://doi.org/10.1109/TAC.2018.2827993. · Zbl 1423.93398 · doi:10.1109/TAC.2018.2827993
[22] ZhaW, ZhaiJ, FeS, et al. Finite‐time stabilization for a class of stochastic nonlinear systems via output feedback. ISA Trans. 2014;53(3):709‐716. https://doi.org/10.1016/j.isatra.2014.01.005. · doi:10.1016/j.isatra.2014.01.005
[23] LanQ, LiS, KhooS, et al. Global finite‐time stabilisation for a class of stochastic nonlinear systems by output feedback. Int J Control. 2015;88(3):494‐506. https://doi.org/10.1080/00207179.2014.962766. · Zbl 1328.93244 · doi:10.1080/00207179.2014.962766
[24] ZhaW, ZhaiJ, AiW, et al. Finite‐time state‐feedback control for a class of stochastic high‐order nonlinear systems. Int J Comput Math. 2015;92(3):643‐660. https://doi.org/10.1080/00207160.2014.906585. · Zbl 1347.93136 · doi:10.1080/00207160.2014.906585
[25] ZhangXH. Finite‐time stabilisation for high‐order nonlinear systems with low‐order and high‐order nonlinearities. Int J Control. 2015;88(8):1‐18. https://doi.org/10.1080/00207179.2015.1011697. · Zbl 1337.93065 · doi:10.1080/00207179.2015.1011697
[26] HuangS, XiangZ. Finite‐time stabilization of switched stochastic nonlinear systems with mixed odd and even powers. Automatica. 2016;73:130‐137. https://doi.org/10.1016/j.automatica.2016.06.023. · Zbl 1372.93211 · doi:10.1016/j.automatica.2016.06.023
[27] FangM, ShiP, DongS. Sliding mode control for Markov jump systems with delays via asynchronous approach. IEEE Trans Syst Man Cybern Syst. 2019;1‐10. https://doi.org/10.1109/TSMC.2019.2917926. · doi:10.1109/TSMC.2019.2917926
[28] DongS, FangM, ShiP, et al. Dissipativity‐based control for fuzzy systems with asynchronous modes and intermittent measurements. IEEE Trans Cybern. 2020;50(6):2389‐2399. https://doi.org/10.1109/TCYB.2018.2887060. · doi:10.1109/TCYB.2018.2887060
[29] LiuJ, WuL, WuC, et al. Event‐triggering dissipative control of switched stochastic systems via sliding mode. Automatica. 2019;103:261‐273. https://doi.org/10.1016/j.automatica.2019.01.029. · Zbl 1415.93283 · doi:10.1016/j.automatica.2019.01.029
[30] OrtegaR, SchaftAVD, MaschkeB, et al. Interconnection and damping assignment passivity‐based control of port‐controlled Hamiltonian systems. Automatica. 2002;38(4):585‐596. https://doi.org/10.1016/s0005‐1098(01)00278‐3. · Zbl 1009.93063 · doi:10.1016/s0005‐1098(01)00278‐3
[31] FujimotoK, SakaiS, SugieT. Passivity based control of a class of Hamiltonian systems with nonholonomic constraints. Automatica. 2012;48(12):3054‐3063. https://doi.org/10.1016/j.automatica.2012.08.032. · Zbl 1255.93046 · doi:10.1016/j.automatica.2012.08.032
[32] SatohS, FujimotoK. Passivity based control of stochastic port‐Hamiltonian systems. IEEE Trans Autom Control. 2013;58(5):1139‐1153. https://doi.org/10.1109/TAC.2012.2229791. · Zbl 1369.93581 · doi:10.1109/TAC.2012.2229791
[33] SatohS, SaekiM. Bounded stabilisation of stochastic port‐Hamiltonian systems. Int J Control. 2015;87(8):1573‐1582. https://doi.org/10.1080/00207179.2014.880127. · Zbl 1317.93265 · doi:10.1080/00207179.2014.880127
[34] SunW, PengL. Robust adaptive control of uncertain stochastic Hamiltonian systems with time varying delay. Asian J Control. 2016;18(2):642‐651. https://doi.org/10.1002/asjc.1143. · Zbl 1346.93391 · doi:10.1002/asjc.1143
[35] LiuY, CaoG, TangS, et al. Energy‐based stabilisation and H_∞ robust stabilisation of stochastic non‐linear systems. IET Control Theory Appl. 2018;12(2):318‐325. https://doi.org/10.1049/iet‐cta.2017.0392. · doi:10.1049/iet‐cta.2017.0392
[36] WangY. Generalized Hamilton Control System Theory Crealization, Control and Applications. Beijing, China: China Science Press; 2007.
[37] BeckenbachE, BellmanR. Inequalities. Berlin, Germany: Springer‐Verlag; 1971. · Zbl 0206.06802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.