×

Hybrid soliton and breather waves, solution molecules and breather molecules of a \((3+1)\)-dimensional Geng equation in shallow water waves. (English) Zbl 1525.76022

The authors present a comprehensive study on a \((3+1)\)-dimensional nonlinear Geng equation, a subject of considerable interest in the field of mathematical physics. Utilizing the Hirota bilinear method, the authors delve into the calculation of first- to fourth-order solutions of the equation, thereby contributing significantly to the existing body of literature. The paper is particularly noteworthy for its three main contributions: the observation of hybrid solitons and breather waves, the elucidation of soliton molecules, and the corresponding constraint conditions under various coordinates.
The authors start by discussing the fourth-order solutions, providing a detailed mathematical framework for their derivation. They introduce an auxiliary function \(f\) and demonstrate how it can be substituted into the equation to compute the fourth-order solutions. This section serves as a cornerstone for the subsequent discussions on soliton and breather molecules.
One of the paper’s most compelling sections is its exploration of soliton molecules. The authors meticulously outline the conditions necessary for generating these molecules, offering mathematical expressions and constraints that govern their formation. They extend their discussion to include the conditions for two soliton molecules under different coordinates, thereby providing a comprehensive understanding of the phenomenon.
Furthermore, the paper touches upon the intriguing subject of breather molecules. While the authors successfully demonstrate that breather molecules can be observed by adjusting certain dispersion parameters, they acknowledge that the explicit conditions for generating these molecules remain unknown. This gap in the research invites further investigation and could be considered as a fertile ground for future studies.
In summary, the paper by Li and Ma offers a robust and mathematically sound exploration of a \((3+1)\)-dimensional nonlinear Geng equation. Through their use of the Hirota bilinear method, they not only calculate various orders of solutions but also make significant strides in understanding the complex phenomena of soliton and breather molecules. While the paper is comprehensive, it leaves room for future research, particularly in the area of breather molecules.

MSC:

76B25 Solitary waves for incompressible inviscid fluids
35Q51 Soliton equations
Full Text: DOI

References:

[1] Holm, D. D.; Marsden, J. E.; Ratiu, T. S., Euler-Poincare models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., 80, 4173-4176 (1998)
[2] Hone, A. N.W., The associated Camassa-Holm equation and the KdV equation, J. Phys. A, Math. Gen., 32, L307-L314 (1999) · Zbl 0989.37065
[3] Fokas, A. S., Integrable nonlinear evolution equations on the half-line, Commun. Math. Phys., 230, 1-39 (2002) · Zbl 1010.35089
[4] Scott, A. C., Encyclopedia of Nonlinear Science (2005), Routledge, Taylor & Francis Group: Routledge, Taylor & Francis Group New York, NY · Zbl 1177.00019
[5] Wazwaz, A. M., N-soliton solutions for the combined KdV-CDG equation and the KdV-Lax equation, Appl. Math. Comput., 203, 402-407 (2008) · Zbl 1185.65192
[6] Zhang, H. Q.; Tian, B.; Lu, X.; Li, H.; Meng, X. H., Soliton interaction in the coupled mixed derivative nonlinear Schrödinger equations, Phys. Lett. A, 373, 4315-4321 (2009) · Zbl 1234.35259
[7] Huang, W. T.; Zhou, C. C.; Lv, X.; Wang, J. P., Dispersive optical solitons for the Schrödinger-Hirota equation in optical fibers, Mod. Phys. Lett. B, 35, Article 2150060 pp. (2021)
[8] Huang, W. T.; Liu, F. F.; Lv, X.; Wang, J. P.; Xu, H. T., Optical soliton and modulation instability in the high birefringence fiber, Nonlinear Dyn., 108, 2429-2445 (2022)
[9] Dinda, P. T.; Remoissenet, M., Breather compactons in nonlinear Klein-Gordon systems, Phys. Rev. E, 60, 6218-6221 (1999)
[10] Kopidakis, G.; Aubry, S.; Tsironis, G. P., Targeted energy transfer through discrete breathers in nonlinear systems, Phys. Rev. Lett., 87, Article 165501 pp. (2001)
[11] Kedziora, D. J.; Ankiewicz, A.; Akhmediev, N., Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits, Phys. Rev. E, 85, Article 066601 pp. (2012)
[12] Ma, W. X., Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A, 379, 1975-1978 (2015) · Zbl 1364.35337
[13] Gao, L. N.; Zi, Y. Y.; Yin, Y. H.; Ma, W. X.; Lu, X., Backlund transformation, multiple wave solutions and lump solutions to a (3+1)-dimensional nonlinear evolution equation, Nonlinear Dyn., 89, 2233-2240 (2018)
[14] Liu, B.; Zhang, X. E.; Wang, B.; Lv, X., Rogue waves based on the coupled nonlinear Schrödinger option pricing model with external potential, Mod. Phys. Lett. B, 36, Article 2250057 pp. (2022)
[15] Wang, M.; Tian, B.; Sun, Y.; Zhang, Z., Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles, Comput. Math. Appl., 79, 576-587 (2020) · Zbl 1443.76233
[16] Li, B. Q.; Ma, Y. L., Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation, Appl. Math. Comput., 386, Article 125469 pp. (2020) · Zbl 1497.35436
[17] Yin, Y. H.; Chen, S. J.; Lv, X., Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations, Chin. Phys. B, 29, Article 120502 pp. (2020)
[18] Lv, X.; Chen, S. J., Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types, Nonlinear Dyn., 103, 947-977 (2021) · Zbl 1516.35175
[19] Korteweg, D. J.; de Vries, G., On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag., 36, 422-443 (1895) · JFM 26.0881.02
[20] Hirota, R.; Satsuma, J., Nonlinear evolution equations generated from the Bäcklund transformation for the Boussinesq equation, Prog. Theor. Phys., 57, 797-807 (1977) · Zbl 1098.81547
[21] Karczewska, A.; Rozmej, P.; Infeld, E., Shallow-water soliton dynamics beyond the Korteweg-de Vries equation, Phys. Rev. E, 90, Article 012907 pp. (2014)
[22] Costa, A.; Osborne, A. R.; Resio, D. T.; Alessio, S.; Chrivì, E.; Saggese, E.; Bellomo, K.; Long, C. E., Soliton turbulence in shallow water ocean surface waves, Phys. Rev. Lett., 113, Article 108501 pp. (2014)
[23] Ma, Y. L.; Li, B. Q., Bifurcation solitons and breathers for the nonlocal Boussinesq equations, Appl. Math. Lett., 124, Article 107677 pp. (2022) · Zbl 1479.35212
[24] Shen, Y.; Tian, B.; Lui, S. H.; Zhou, T. Y., Studies on certain bilinear form, N-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3+1)-dimensional shallow water wave equation with time-dependent coefficients, Nonlinear Dyn., 108, 2447-2460 (2022)
[25] Li, B. Q.; Wazwaz, A. M.; Ma, Y. L., Two new types of nonlocal Boussinesq equations in water waves: bright and dark soliton solutions, Chin. J. Phys., 77, 1782-1788 (2022) · Zbl 1540.35311
[26] Geng, X. G., Algebraic-geometrical solutions of some multidimensional nonlinear evolution equations, J. Phys. A, Math. Gen., 36, 2289-2303 (2003) · Zbl 1039.37061
[27] Geng, X. G.; Ma, Y. L., N-soliton solution and its Wronskian form of a (3+ 1)-dimensional nonlinear evolution equation, Phys. Lett. A, 369, 285-289 (2007) · Zbl 1209.35116
[28] Wazwaz, A. M., A (3 + 1)-dimensional nonlinear evolution equation with multiple soliton solutions and multiple singular soliton solutions, Appl. Math. Comput., 215, 1548-1552 (2009) · Zbl 1179.35278
[29] Zhaqilao, Rogue waves and rational solutions of a (3 + 1)-dimensional nonlinear evolution equation, Phys. Lett. A, 377, 3021-3026 (2013) · Zbl 1370.35243
[30] Liu, N.; Liu, Y. S., New multi-soliton solutions of a (3 + 1)-dimensional nonlinear evolution equation, Comput. Math. Appl., 71, 1645-1654 (2016) · Zbl 1443.35134
[31] Zhang, H. Q.; Ma, W. X., Resonant multiple wave solutions for a (3 + 1)-dimensional nonlinear evolution equation by linear superposition principle, Comput. Math. Appl., 73, 2339-2343 (2017) · Zbl 1375.35471
[32] Pu, J. C.; Hu, H. C., Mixed lump-soliton solutions of the (3+1)-dimensional soliton equation, Appl. Math. Lett., 85, 77-81 (2018) · Zbl 1402.35069
[33] Crasovan, L. C.; Kartashov, Y. V.; Mihalache, D.; Torner, L.; Kivshar, Y. S.; Perez-Garcia, V. M., Soliton “molecules”: robust clusters of spatiotemporal optical solitons, Phys. Rev. E, 67, Article 046610 pp. (2003)
[34] Perez-Garcia, V. M.; Vekslerchik, V., Soliton molecules in trapped vector nonlinear Schrödinger systems, Phys. Rev. E, 67, Article 061804 pp. (2003)
[35] Li, B. Q.; Ma, Y. L., Soliton resonances and soliton molecules of pump wave and Stokes wave for a transient stimulated Raman scattering system in optics, Eur. Phys. J. Plus, 137, 1227 (2022)
[36] Stratmann, M.; Pagel, T.; Mitschke, F., Experimental observation of temporal soliton molecules, Phys. Rev. Lett., 95, Article 143902 pp. (2005)
[37] Herink, G.; Kurtz, F.; Jalali, B.; Solli, D. R.; Ropers, C., Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules, Science, 356, 50-53 (2017)
[38] Ma, Y. L.; Wazwaz, A. M.; Li, B. Q., A new (3+1)-dimensional Sakovich equation in nonlinear wave motion: Painlevé integrability, multiple solitons and soliton molecules, Qual. Theory Dyn. Syst., 21, 158 (2022) · Zbl 1504.35122
[39] Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27, 1192-1194 (1971) · Zbl 1168.35423
[40] Hu, X. B.; Ma, W. X., Application of Hirota’s bilinear formalism to the Toeplitz lattice-some special soliton-like solutions, Phys. Lett. A, 293, 161-165 (2002) · Zbl 0985.35072
[41] Lu, X.; Ma, W. X.; Chen, S. T.; Khalique, C. M., A note on rational solutions to a Hirota-Satsuma-like equation, Appl. Math. Lett., 58, 13-18 (2016) · Zbl 1343.35066
[42] Sun, Y. L.; Ma, W. X.; Yu, J. P., N-soliton solutions and dynamic property analysis of a generalized three-component Hirota-Satsuma coupled KdV equation, Appl. Math. Lett., 120, Article 107224 pp. (2021) · Zbl 1475.35111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.