×

Application of Papkovich-Neuber general solution for crack problems in strain gradient elasticity. (English) Zbl 1525.74185

Summary: In this paper, we use the Papkovich-Neuber potentials to derive the variant of general solution for the plain problems of strain gradient elasticity theory (SGET) in bounded domains. General solution contains complete sets of functions satisfying 2D Laplace equations and modified Helmholtz equations, including the polynomial and modified Bessel functions of integer and fractional orders with corresponding angular periodicity. It is shown that proposed form of general solution allows to derive the known SGET asymptotic solutions for the crack-tip fields.

MSC:

74R10 Brittle fracture
74B99 Elastic materials
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics
74G70 Stress concentrations, singularities in solid mechanics
Full Text: DOI

References:

[1] Gourgiotis, P. A.; Georgiadis, H. G., Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity, J. Mech. Phys. Solids, 57, 1898-1920 (2009) · Zbl 1193.74008 · doi:10.1016/j.jmps.2009.07.005
[2] Aravas, N.; Giannakopoulos, A. E., Plane asymptotic crack-tip solutions in gradient elasticity, Int. J. Solids Struct., 46, 4478-4503 (2009) · Zbl 1176.74155 · doi:10.1016/j.ijsolstr.2009.09.009
[3] Sciarra, G.; Vidoli, S., Asymptotic fracture modes in strain-gradient elasticity: Size effects and characteristic lengths for isotropic materials, J. Elasticity, 113, 27-53 (2013) · Zbl 1278.74011 · doi:10.1007/s10659-012-9409-y
[4] Lurie, S.; Belov, P., Gradient effects in fracture mechanics for nano-structured materials, Eng. Fract. Mech., 130, 3-11 (2014) · doi:10.1016/j.engfracmech.2014.07.032
[5] Kotoul, M.; Profant, T., Asymptotic solution for interface crack between two materials governed by dipolar gradient elasticity, Eng. Fract. Mech., 201, 80-106 (2018) · doi:10.1016/j.engfracmech.2018.05.002
[6] Askes, H.; Susmel, L., Understanding cracked materials: Is linear elastic fracture mechanics obsolete?, Fatig. Fract. Eng. Mater. Struct., 38, 154-160 (2015) · doi:10.1111/ffe.12183
[7] Vasiliev, V., New approach to failure of pre-cracked brittle materials based on regularized solutions of strain gradient elasticity, Eng. Fract. Mech., 258, 108080 (2021) · doi:10.1016/j.engfracmech.2021.108080
[8] Vasiliev, V., Estimation of the strength of plates with cracks based on the maximum stress criterion in a scale-dependent generalized theory of elasticity, Phys. Mesomech., 22, 456-462 (2019) · doi:10.1134/S102995991906002X
[9] Papanicolopulos, S. A.; Zervos, A., Numerical solution of crack problems in gradient elasticity, Eng. Comput. Mech., 163, 73-82 (2010)
[10] Placidi, L.; Barchiesi, E., Energy approach to brittle fracture in strain-gradient modelling, Proc. R. Soc. London, Ser. A, 474, 2210 (2018) · Zbl 1402.74094
[11] Barchiesi, E., Computation of brittle fracture propagation in strain gradient materials by the FEniCS library, Math. Mech. Solids, 26, 1081286520954513 (2020)
[12] Makvandi, R., A strain gradient enhanced model for the phase-field approach to fracture, Proc. Appl. Math. Mech., 21, e202100195 (2021) · doi:10.1002/pamm.202100195
[13] Makvandi, R., Revisiting Mindlin’s theory with regard to a gradient extended phase-field model for fracture, Proc. Appl. Math. Mech., 20, e202000104 (2021) · doi:10.1002/pamm.202000104
[14] Askes, H.; Aifantis, E., Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results, Int. J. Solids Struct., 48, 1962-1990 (2011) · doi:10.1016/j.ijsolstr.2011.03.006
[15] Solyaev, Y., On the elastic wedge problem within simplified and incomplete strain gradient elasticity theories, Int. J. Solids Struct., 239, 111433 (2022) · doi:10.1016/j.ijsolstr.2022.111433
[16] Lurie, S., Radial multipliers in solutions of the Helmholtz equations, Integr. Transforms Spec. Funct., 30, 254-263 (2019) · Zbl 1407.35071 · doi:10.1080/10652469.2018.1561677
[17] Solyaev, Y., Three-phase model of particulate composites in second gradient elasticity, Eur. J. Mech. A, 78, 103853 (2019) · Zbl 1477.74022 · doi:10.1016/j.euromechsol.2019.103853
[18] Y. Solyaev, ‘‘Complete general solutions for equilibrium equations of isotropic strain gradient elasticity,’’ arXiv: 2207.08863 (2022).
[19] M. Lazar and D. Polyzos, ‘‘On non-singular crack fields in Helmholtz type enriched elasticity theories,’’ Int. J. Solids Struct. 62, 2004-1-7 (2015).
[20] Lurie, S. A., A new approach to non-singular plane cracks theory in gradient elasticity, Math. Comput. Appl., 24, 93 (2019)
[21] Mindlin, R. D., Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 51-78 (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[22] Dell’Isola, F., Generalized Hooke’s law for isotropic second gradient materials, Proc. R. Soc. London, Ser. A, 465, 2177-2196 (2009) · Zbl 1186.74019
[23] Polizzotto, C., A unifying variational framework for stress gradient and strain gradient elasticity theories, Eur. J. Mech. A, 49, 430-440 (2015) · Zbl 1406.74091 · doi:10.1016/j.euromechsol.2014.08.013
[24] Lurie, A., Theory of Elasticity (2005), Berlin: Springer, Berlin · doi:10.1007/978-3-540-26455-2
[25] Morse, P.; Feshbach, H., Methods of Theoretical Physics, Part II (1953), New York: McGraw-Hill, New York · Zbl 0051.40603
[26] Qin, Q. H., Trefftz finite element method and its applications, Appl. Mech. Rev., 58, 316-337 (2005) · doi:10.1115/1.1995716
[27] Anderson, T. L., Fracture Mechanics: Fundamentals and Applications (2017), Boca Raton, FL: CRC, Boca Raton, FL · Zbl 1360.74001 · doi:10.1201/9781315370293
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.