×

Research on the vibro-acoustic propagation characteristics of a large mining two-stage planetary gear reducer. (English) Zbl 1525.74094

Summary: In this paper, a computational model is proposed to predict the noise radiation of a planetary gear reducer. In addition, a system-level vibro-acoustic model of a two-stage planetary gear reducer is also established, and the dynamic contact equations of engagement are deduced to investigate the dynamic loads at the interface of bearing-housing and ring-housing in operation, using a large mining two-stage planetary reducer as a test mechanism. Moreover, the frequency response of the planetary transmission has been derived, the radiation noises from the two-stage planetary gear train are analyzed, the simulation results agree well with the experimental results. This research can be guide structural optimization of planetary gear mining reducer.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74M15 Contact in solid mechanics
Full Text: DOI

References:

[1] J. Liu, Y. Xu, Y. Shao, et al., “The effect of a localized fault in the planet bearing on vibrations of a planetary gear set,” J. Strain Anal. Eng. Des., 2018.
[2] W. Yang and X. Tang, “Numerical analysis for heat transfer laws of a wet multi-disk clutch during transient contact,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 18, nos 7-8, pp. 599-613, 2017, doi:10.1515/ijnsns-2017-0081. · Zbl 1401.74279 · doi:10.1515/ijnsns-2017-0081
[3] W. Yang and X. Tang, “Modelling and modal analysis of a hoist equipped with two-stage planetary gear transmission system,” in Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, vol. 231, 4, 2017, pp. 739-749.
[4] X. Tang, D. Zhang, T. Liu, A. Khajepour, H. Yu, and H. Wang, “Research on the energy control of a dual-motor hybrid vehicle during engine start-stop process,” Energy, vol. 166, pp. 1181-1193, 2019, doi:10.1016/j.energy.2018.10.130. · doi:10.1016/j.energy.2018.10.130
[5] A. Strozzi, E. Bertocchi, S. Mantovani, et al.., “Analytical evaluation of the peak contact pressure in a rectangular elastomeric seal with rounded edges,” J. Strain Anal. Eng. Des., vol. 51, no. 4, pp. 304-317, 2016, doi:10.1177/0309324715612300. · doi:10.1177/0309324715612300
[6] X. Tang, W. Yang, X. Hu, et al.., “A novel simplified model for torsional vibration analysis of a series-parallel hybrid electric vehicle,” Mech. Syst. Signal Process., vol. 85, pp. 329-338, 2017, doi:10.1016/j.ymssp.2016.08.020. · doi:10.1016/j.ymssp.2016.08.020
[7] Y. Qin, C. Wei, X. Tang, et al.., “A novel nonlinear road profile classification approach for controllable suspension system: simulation and experimental validation,” Mech. Syst. Signal Process., vol. 125, pp. 79-98, 2019, doi:10.1016/j.ymssp.2018.07.015. · doi:10.1016/j.ymssp.2018.07.015
[8] X. Tang, X. Hu, W. Yang, et al.., “Novel torsional vibration modeling and assessment of a power-split hybrid electric vehicle equipped with a dual mass flywheel,” IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 1990-2000, 2018, doi:10.1109/tvt.2017.2769084. · doi:10.1109/tvt.2017.2769084
[9] X. Tang, W. Yang, D. Zhang, et al.., “A novel two degree-of-freedom dynamic model of a full hybrid vehicle,” Int. J. Electr. Hybrid Veh. (IJEHV), vol. 9, no. 1, pp. 67-77, 2017, doi:10.1504/ijehv.2017.082817. · doi:10.1504/ijehv.2017.082817
[10] A. Kahraman, “Effect of axial vibrations on the dynamics of a helical gear pair,” J. Vib. Acoust., vol. 115, no. 1, pp. 33-39, 1993, doi:10.1115/1.2930311. · doi:10.1115/1.2930311
[11] P. Y. Wang and X. L. Cai, “Vibrational analysis of planetary gear trains by finite element method,” J. Vibroeng., vol. 14, no. 4, pp. 1450-1458, 2013.
[12] V. Abousleiman and P. Velex, “A hybrid 3D finite element/lumped parameter model for quasi-static and dynamic analyses of planetary/epicyclical gear sets,” Mech. Mach. Theor., vol. 41, pp. 725-748, 2006, doi:10.1016/j.mechmachtheory.2005.09.005. · Zbl 1143.70300 · doi:10.1016/j.mechmachtheory.2005.09.005
[13] D. R. Kiracofe and R. G. Parker, “Structured vibration modes of general compound planetary gear systems,” J. Vib. Acoust., vol. 129, pp. 1-16, 2007, doi:10.1115/1.2345680. · doi:10.1115/1.2345680
[14] G. Roulois, Y. Skiadanek, F. Marrot, and J. Caillet, “Dynamic and acoustic simulation of helicopters,” in International Gear Conference, 2014, pp. 437-446.
[15] J. BihR, M. Heider, M. Otto, et al., “Gear noise prediction in automotive transmissions,” in International Gear Conference, 2014, pp. 457-465.
[16] M. Shuai, Z. Yidu, and W. Qiong, “Research on multiple-split load sharing of two-stage star gearing system in consideration of displacement compatibility,” Mech. Mach. Theor., vol. 88, pp. 1-15, 2015, doi:10.1016/j.mechmachtheory.2015.01.005. · doi:10.1016/j.mechmachtheory.2015.01.005
[17] M. Shuai, Z. Yidu, W. Qiong, et al., “Load sharing behavior analysis method of wind turbine gearbox in consideration of multiple-errors,” Renew. Energy, vol. 97, pp. 481-491, 2016.
[18] R. Gunda and S. Vijayakar, Acoustic Radiation from an Automotive Gear Box, SAE Technical Paper 2007-01-2170, 2007, doi:10.4271/2007-01-2170. · doi:10.4271/2007-01-2170
[19] Y. Guo, T. Eritenel, T. M. Ericson, and R. G. Parker, “Vibro-acoustic propagation of gear dynamics in a gear-bearing-housing system,” J. Sound Vib., vol. 333, pp. 5762-5785, 2014, doi:10.1016/j.jsv.2014.05.055. · doi:10.1016/j.jsv.2014.05.055
[20] V. Kumar Ambarisha, S.-E. Chen, S. Vijayakar, and J. Mendoza, Time-domain Dynamic Analysis of Helical Gears with Reduced Housing Model, SAE Technical Paper 2013-01-1898, 2v013, doi:10.4271/2013-O1-1898. · doi:10.4271/2013-O1-1898
[21] J.-S. Choil, H.-A. Leel, and J.-Y. Lee, “Structural optimization of an automobile transmission case to minimize radiation noise using the model reduction technique,” J. Mech. Sci. Technol., vol. 25, no. 5, pp. 1247-1255, 2011, doi:10.1007/s12206-011-0135-3. · doi:10.1007/s12206-011-0135-3
[22] T. Ide, M. Otomori, J. P. Leiva, and B. Watson, “Structural optimization methods and techniques to design light and efficient automatic transmission of vehicles with low radiated noise,” Struct. Multidiscip. Optim., vol. 50, pp. 1137-1150, 2014, doi:10.1007/s00158-014-1143-6. · doi:10.1007/s00158-014-1143-6
[23] X. Wang, Finite Element Method, Beijing, Tsinghua University Press, 2003.
[24] W. Yang, X. Tang, and X. Chen, “Nonlinear modelling and transient dynamics analysis of a hoist equipped with a two-stage planetary gear transmission system,” J. Vibroeng., vol. 17, pp. 1392-8716, 2015.
[25] X. Tang, L. Zou, W. Yang, Y. Huang, and H. Wang, “Novel mathematical modelling methods of comprehensive mesh stiffness for spur and helical gears,” Appl. Math. Model., vol. 64, pp. 524-540, 2018, doi:10.1016/j.apm.2018.08.003. · Zbl 1480.70004 · doi:10.1016/j.apm.2018.08.003
[26] X. Zhang, X. Tang, and W. Yang, “Analysis of transmission error and load distribution of a hoist two-stage planetary gear system,” in Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, vol. 233, 1, 2019, pp. 3-16.
[27] Y. Qin, X. Tang, T. Jia, et al.., “Noise and vibration suppression in hybrid electric vehicles: state of the art and challenges,” Renew. Sust. Energy Rev., vol. 124, p. 109782, 2020, doi:10.1016/j.rser.2020.109782. · doi:10.1016/j.rser.2020.109782
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.