×

Modeling and fault identification of the gear tooth surface wear failure system. (English) Zbl 1525.70009

Summary: In order to detect the gear tooth surface wear fault, this paper presents a new fault diagnosis method based on Symlets wavelet family multi-structure element difference morphological denoising and frequency slice wavelet transform (FSWT). Besides considering the gear backlash, time-varying mesh stiffness, gear error and bearing longitudinal response, and low frequency excitation caused by the torque fluctuation, random disturbance of damping gear ratio, gear backlash, excitation frequency, and meshing stiffness are also considered. Dynamics equations of a three degrees of freedom spur gear transmission system with tooth surface wear fault are established according to Newton’s laws. The 4–5 order variable step Runge-Kutta method has been used for solving the equations to get the vibration signal of the system. Then, the proposed method is applied to extract the wear fault signal, which verifies the feasibility and effectiveness of the proposed method.

MSC:

70B15 Kinematics of mechanisms and robots
70-08 Computational methods for problems pertaining to mechanics of particles and systems
Full Text: DOI

References:

[1] J. L. F. Chacon, E. A. Andicoberry, V. Kappatos, et al.., “An experimental study on the applicability of acoustic emission for wind turbine gearbox health diagnosis,” J. Low Freq. Noise Vib. Act. Contr., vol. 35, no. 1, pp. 64-76, 2016. doi:10.1177/0263092316628401. · doi:10.1177/0263092316628401
[2] P. V. Kane and A. B. Andhare, “Application of psychoacoustics for gear fault diagnosis using artificial neural network,” J. Low Freq. Noise Vib. Act. Contr., vol. 35, no. 3, pp. 207-220, 2016. doi:10.1177/0263092316660915. · doi:10.1177/0263092316660915
[3] M. Amarnath and I. R. P. Krishna, “Detection and diagnosis of surface wear failure in a spur geared system using EEMD based vibration signalanalysis,” Tribol. Int., vol. 61, no. 61, pp. 224-234, 2013. doi:10.1016/j.triboint.2013.01.001. · doi:10.1016/j.triboint.2013.01.001
[4] A. Muniyappa, S. Chandramohan, and S. Seethapathy, “Detection and diagnosis of gear tooth wear through metallurgical and oil analysis,” Tribol. Online, vol. 5, no. 2, pp. 102-110, 2010. doi:10.2474/trol.5.102. · doi:10.2474/trol.5.102
[5] Y. X. Zhang, K. J. Ma, Y. Liu, et al.., “An analysis of the wear features of worm gear tooth flanks,” Tribol. Int., vol. 21, no. 5, pp. 281-285, 1988. doi:10.1016/0301-679x(88)90006-0. · doi:10.1016/0301-679x(88)90006-0
[6] A. Hamilton, A. Cleary, and F. Quail, “Development of a novel wear detection system for wind turbine gearboxes,” IEEE Sensor. J., vol. 14, no. 2, pp. 465-473, 2014. doi:10.1109/jsen.2013.2284821. · doi:10.1109/jsen.2013.2284821
[7] F. K. Choy, V. Polyshchuk, J. J. Zakrajsek, et al.., “Analysis of the effects of surface pitting and wear on the vibration of a gear transmission system,” Tribol. Int., vol. 29, no. 1, pp. 77-83, 1996. doi:10.1016/0301-679x(95)00037-5. · doi:10.1016/0301-679x(95)00037-5
[8] S. Feng, B. Fan, J. Mao, et al.., “Prediction on wear of a spur gearbox by on-line wear debris concentration monitoring,” Wear, vols 336-337, pp. 1-8, 2015. doi:10.1016/j.wear.2015.04.007. · doi:10.1016/j.wear.2015.04.007
[9] A. Kahraman and R. Singh, “Nonlinear dynamics of a geared rotor-bearing system with multiple clearances,” J. Sound Vib., vol. 144, no. 3, pp. 469-506, 1991. doi:10.1016/0022-460x(91)90564-z. · doi:10.1016/0022-460x(91)90564-z
[10] A. Parey, M. E. Badaoui, F. Guil let, et al.., “Dynamic modeling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect,” J. Sound Vib., vol. 294, no. 3, pp. 547-561, 2006. doi:10.1016/j.jsv.2005.11.021. · doi:10.1016/j.jsv.2005.11.021
[11] P. Velex and M. Maatar, “A mathematical model for analyzing the influence of shape deviations and mounting errors on gear dynamic behavior,” J. Sound Vib., vol. 191, pp. 629-660, 1996. doi:10.1006/jsvi.1996.0148. · doi:10.1006/jsvi.1996.0148
[12] I. Howard, S. Jia, and J. Wang, “The dynamic modelling of a spur gear in mesh including friction and a crack,” Mech. Syst. Signal Process., vol. 15, no. 5, pp. 831-853, 2001. doi:10.1006/mssp.2001.1414. · doi:10.1006/mssp.2001.1414
[13] G. Litak and M. I. Friswell, “Dynamic of a gear system with faults in meshing stiffness,” Nonlinear Dynam., vol. 41, no. 4, pp. 415-421, 2005. doi:10.1007/s11071-005-1398-y. · Zbl 1142.70312 · doi:10.1007/s11071-005-1398-y
[14] J. Zhou and W. Sun, “Vibration and noise radiation characteristics of gear transmission system,” J. Low Freq. Noise Vib. Act. Contr., vol. 33, no. 4, pp. 485-502, 2014. doi:10.1260/0263-0923.33.4.485. · doi:10.1260/0263-0923.33.4.485
[15] Y. Wang and W. J. Zhang, “Stochastic vibration model of gear transmission systems considering speed-dependent random errors,” Nonlinear Dynam., vol. 17, no. 2, pp. 187-203, 1998. doi:10.1023/a:1008389419585. · Zbl 0946.70505 · doi:10.1023/a:1008389419585
[16] L. Walha, T. Fakhfakh, and M. Haddar, “Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash,” Mech. Mach. Theor., vol. 44, no. 5, pp. 1058-1069, 2009. doi:10.1016/j.mechmachtheory.2008.05.008. · Zbl 1350.70019 · doi:10.1016/j.mechmachtheory.2008.05.008
[17] J. Wang, H. Wang, H. Wang, et al.., “Influence of the random system parameters on the nonlinear dynamic characteristics of gear transmission system,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 18, nos 7-8, pp. 619-630, 2017. doi:10.1515/ijnsns-2016-0119. · Zbl 1401.70037 · doi:10.1515/ijnsns-2016-0119
[18] J. Wang, H. Wang, and L. Guo, “Analysis of stochastic nonlinear dynamics in the gear transmission system with backlash,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 16, no. 2, pp. 111-121, 2015. doi:10.1515/ijnsns-2014-0089. · Zbl 1401.70036 · doi:10.1515/ijnsns-2014-0089
[19] J. Wang, H. Wang, and L. Guo, “Analysis of effect of random perturbation on dynamic response of gear transmission system,” Chaos Solitons Fractals, vol. 68, pp. 78-88, 2014. doi:10.1016/j.chaos.2014.08.004. · Zbl 1354.74084 · doi:10.1016/j.chaos.2014.08.004
[20] J. Serra, “Morphological filtering: an overview,” Signal Process., vol. 38, no. 1, pp. 3-11, 1994. doi:10.1016/0165-1684(94)90052-3. · Zbl 0813.93064 · doi:10.1016/0165-1684(94)90052-3
[21] Z. Yan, A. Miyamoto, and Z. Jiang, “Frequency slice wavelet transform for transient vibration response analysis,” Mech. Syst. Signal Process., vol. 23, no. 5, pp. 1474-1489, 2009. doi:10.1016/j.ymssp.2009.01.008. · doi:10.1016/j.ymssp.2009.01.008
[22] Z. Yan, A. Miyamoto, Z. Jiang, et al.., “An overall theoretical description of frequency slice wavelet transform,” Mech. Syst. Signal Process., vol. 24, no. 2, pp. 491-507, 2010. doi:10.1016/j.ymssp.2009.07.002. · doi:10.1016/j.ymssp.2009.07.002
[23] J. Hu, R. Shao, and Z. Zeng, “Method of gear’s fault diagnosis based on spectral entropy,” J. Mech. Trans., vol. 31, no. 5, pp. 84-87, 2007. doi:10.16578/j.issn.1004.2539.2007.05.039. · doi:10.16578/j.issn.1004.2539.2007.05.039
[24] R. Shao, X. Huang, H. Liu, et al.., “Fault detection and diagnosis of gear system based on higher order cumulants,” Chin. J. Mech. Eng., vol. 44, no. 6, pp. 161-168, 2008. doi:10.3901/jme.2008.06.161. · doi:10.3901/jme.2008.06.161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.