×

A Bayesian multinomial regression model for palaeoclimate reconstruction with time uncertainty. (English) Zbl 1525.62145


MSC:

62P12 Applications of statistics to environmental and related topics
Full Text: DOI

References:

[1] AlleyRB, AgústsdóttirAM. 2005. The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews24(10-11):1123-1149.
[2] AmmannCM, JoosF, SchimelDS, Otto‐BliesnerBL, TomasRA. 2007. Solar influence on climate during the past millennium: results from transient simulations with the NCAR climate system model. Proceedings of the National Academy of Sciences USA104(10):3713-3718.
[3] AntonssonK, BrooksSJ, SeppäH, TelfordRJ, BirksHJB. 2006. Quantitative palaeotemperature records inferred from fossil chironomid and pollen assemblages from Lake Gilltjärnen, northern central Sweden. Journal of Quaternary Science21:831-841.
[4] BarbozaL, LiB, TingleyMP, ViensFG. 2014. Reconstructing 2014. past temperatures from natural proxies and estimated climate forcings using short‐and long‐memory models. The Annals of Applied Statistics8(4):1966-2001. · Zbl 1454.62434
[5] BirksHJB. 1995. Quantitative palaeoenvironmental reconstructions. In Statistical Modelling of Quaternary Science Data, Technical Guide 5, DMaddy (ed.), JSBrew (ed.) (eds), Quaternary Research Association: Cambridge; 161-254.
[6] BirksH, LineJ, JugginsS, StevensonA, Ter BraakC. 1990. Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society B: Biological Sciences327(1240):263-278.
[7] BirksHJB, HeiriO, SeppäH, BjuneAE. 2010. Strengths and weaknesses of quantitative climate reconstructions based on late‐quaternary biological proxies. The Open Ecology Jounal3:68-110.
[8] BlaauwM, ChristenJA. 2005. Radiocarbon peat chronologies and environmental change. Journal of the Royal Statistical Society: Series C (Applied Statistics)54(4):805-816. · Zbl 1490.62392
[9] BlaauwM, ChristenJA. 2011. Flexible paleoclimate 2011. age‐depth models using an autoregressive gamma process. Bayesian Analysis6(3):457-474. · Zbl 1330.62413
[10] BlaauwM, HeuvelinkGB, MauquoyD, van derPlichtJ, vanGeelB. 2003. A numerical approach to^14C wiggle‐match dating of organic deposits: best fits and confidence intervals. Quaternary Science Reviews22(14):1485-1500.
[11] Bronk RamseyC. 2008. Deposition models for chronological records. Quaternary Science Reviews27(1):42-60.
[12] BrynjarsdóttirJ, BerlinerLM. 2011. Bayesian hierarchical modeling for paleoclimate reconstruction from geothermal data. The Annals of Applied Statistics5(2B):1328-1359. · Zbl 1223.62173
[13] ErästöP, HolmströmL. 2006. Selection of prior distributions and multiscale analysis in Bayesian temperature reconstructions based on fossil assemblages. Journal of Paleolimnology36:69-80.
[14] ErästöP, HolmströmL, KorholaA, WeckströmJ. 2012. Finding a consensus on credible 2012. features among several paleoclimate reconstructions. Annals of Applied Statistics6(4):1377-1405. Available on‐line at http://dx.doi.org/10.1214/12-AOAS540, and also at http://cc.oulu.fi/ llh/preprints/Consensus.zip [Accessed: May 4, 2016.] · Zbl 1257.62119 · doi:10.1214/12-AOAS540
[15] GelmanA, CarlinJB, SternHS, RubinDB. 2004. Bayesian Data Analysis, (2nd ed). Chapman & Hall/CRC: Boca Raton, FL, USA. · Zbl 1039.62018
[16] HaslettJ, ParnellA. 2008. A simple monotone process with application to radiocarbon‐dated depth chronologies. Journal of the Royal Statistical Society: Series C (Applied Statistics)57(4):399-418. · Zbl 1409.62221
[17] HaslettJ, WhileyM, BhattacharyaS, MitchellF, AllenJ, HuntleyB, WilsonS, Salter‐TownshendM. 2006. Bayesian paleoclimate reconstruction. Journal of the Royal Statistical Society, Series A169(3):395-438.
[18] HeegaardE, BirksHJB, TelfordRJ. 2005. Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed‐effect regression. The Holocene15(4):612-618.
[19] HolmströmL, IlvonenL, SeppäH, VeskiS. 2015a. A Bayesian spatiotemporal model for reconstructing climate from multiple pollen records. The Annals of Applied Statistics9(3):1194-1225. · Zbl 1454.62448
[20] HolmströmL, IlvonenL, SeppäH, VeskiS. 2015b. Supplement A to A Bayesian spatiotemporal model for reconstructing climate from multiple pollen records. DOI: 10.1214/15‐AOAS832SUPPA. An on line supplement. [Accessed May 4, 2016].
[21] JansenE, Overpeck, BriffaKR, DuplessyJC, JoosF, Masson‐DelmotteV, OlagoD, Otto‐BliesnerB, PeltierWR, RahmstorfS, RameshR, RaynaudD, RindD, SolominaO, VillalbaR, ZhangD. 2007. Climate Change 2007: The Physical 2007. Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, SSolomon (ed.), DQin (ed.), MManning (ed.), ZChen (ed.), MMarquis (ed.), KBAveryt (ed.), MTignor (ed.), HLMiller (ed.) (eds), Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA; 433-497.
[22] JonesPD, BriffaKR, OsbornTJ, LoughJM, vanOmmenTD, VintherBM, LuterbacherJ, WahlER, ZwiersFW, MannME, SchmidtGA, AmmannCM, BuckleyBM, CobbKM, EsperJ, GoosseH, GrahamN, JansenE, KieferT, KullC, KüttelM, Mosley‐ThompsonE, OverpeckJT, RiedwylN, SchulzM, TudhopeAW, VillalbaR, WannerH, WolffE, XoplakiE. 2009. High‐resolution palaeoclimatology 2009 if presentation of author names correct. of the last millennium: a review of current status and future prospects. The Holocene19(1):3-49.
[23] JugginsS, BirksHJB. 2012. Quantitative environmental reconstructions from biological data. In Tracking Environmental Change Using Lake Sediments, Vol. 5, Data Handling and Numerical Techniques, HJBBirks (ed.), AFLotter (ed.), SJuggins (ed.), JPSmol (ed.) (eds), Springer: Dordrecht; 431-494 .
[24] KorholaA, VaskoK, ToivonenHTT, OlanderH. 2002. Holocene temperature changes in northern Fennoscandia reconstructed from chironomids using Bayesian modelling. Qaternary Science Reviews21(16-17):1841-1860.
[25] LiB, NychkaDW, AmmannCM. 2010. The value of multi‐proxy reconstruction of past climate. Journal of the American Statistical Association105:883-911. · Zbl 1390.62190
[26] LiJ, IlvonenL, XuQ, NiL, HolmströmL, CaoX, ZhengZ, LuH, LuoY, LiY, LiC, ZhangX, SeppäH. 2015. East Asian summer monsoon precipitation variations in monsoonal China over the last 9500 years: a comparison of pollen‐based reconstructions and model simulations. Submitted for publication.
[27] Masson‐DelmotteV, SchulzM, Abe‐OuchiA, BeerJ, GanopolskiA, Gonzalez RoucoJF, JansenE, LambeckK, LuterbacherJ, NaishT, et al. 2013. Information from paleoclimate archives. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, StockerTF (ed.), PlattnerG‐K (ed.), TignorM (ed.), AllenSK (ed.), BoschungJ (ed.), NauelsA (ed.), XiaY (ed.), MidgleyPM (ed.) (eds). Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA; 383-464.
[28] OhlweinC, WahlER. 2012. Review of probabilistic pollen‐climate transfer methods. Quaternary Science Reviews31(0):17-29.
[29] ParnellAC, BuckCE, DoanTK. 2011. A review of statistical chronology models for high‐resolution, proxy‐based Holocene palaeoenvironmental reconstruction. Quaternary Science Reviews30(21):2948-2960.
[30] ParnellAC, SweeneyJ, DoanTK, Salter‐TownshendM, AllenJR, HuntleyB, HaslettJ. 2015. Bayesian inference for palaeoclimate with time uncertainty and stochastic volatility. Journal of the Royal Statistical Society: Series C (Applied Statistics)64(1):115-138.
[31] RobertCP, CasellaG. 2004. Monte Carlo Statistical Methods, (2nd edn). Springer‐Verlag New York, Inc. · Zbl 1096.62003
[32] SalonenJS, IlvonenL, SeppäH, HolmströmL, TelfordRJ, GaidamavičiusA, StančikaitėM, SubettoD. 2012. Comparing different calibration methods (WA/WA‐PLS regression and Bayesian modelling) and different‐sized calibration sets in pollen‐based quantitative cllimate reconstructions. The Holocene22(4):413-424.
[33] Salter‐TownshendM, HaslettJ. 2012. Fast inversion of a flexible regression model for multivariate pollen counts data. Environmetrics23(7):595-605.
[34] SeppäH, BjuneAE, TelfordRJ, BirksHJB, VeskiS. 2009. Last nine‐thousand years of temperature variability in Northern Europe. Climate of the Past5:523-535.
[35] SeppäH, HammarlundD, AntonssonK. 2005. Low‐frequency and high‐frequency changes in temperature and effective humidity during the Holocene in south‐central Sweden: implications for atmospheric and oceanic forcings of climate. Climate Dynamics25:285-297.
[36] SeppäH, PoskaA. 2004. Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns. Quaternary Research61:22-31.
[37] terBraakCJ, vanDameH. 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia178(3):209-223.
[38] terBraakCajoJF, JugginsS. 1993. Weighted averaging partial least squares regression (WA‐PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia269/270:485-502.
[39] TingleyMP, CraigmilePF, HaranM, LiB, Mannshardt‐ShamseldinE, RajaratnamB. 2012. Piecing together the past: statistical insights into paleoclimatic reconstructions. Quaternary Science Reviews35:1-22.
[40] TingleyMP, HuybersP. 2010a. A Bayesian algorithm for reconstructing climate anomalies in space and time. Part 1: development and applications to paleoclimate reconstruction problems. Journal of Climate23:2759-2781.
[41] TingleyMP, HuybersP. 2010b. A Bayesian algorithm for reconstructing climate anomalies in space and time part 2: comparison with the regularized expectation‐maximization algorithm. Journal of Climate23:2782-2800.
[42] ToivonenHTT, MannilaH, KorholaA, OlanderH. 2001. Applying Bayesian statistics to organism‐based environmental reconstruction. Ecological Applications11(2):618-630.
[43] VaskoK, ToivonenHTT, KorholaA. 2000. A Bayesian multinomial Gaussian response model for organism‐based environmental reconstruction. Journal of Paleolimnology24:243-250.
[44] VeskiS, SeppäH, OjalaAEK. 2004. Cold event at 8200 yr BP recorded in annually laminated lake sediments in eastern Europe. Geology32(8):681-684.
[45] WernerJP, LuterbacherJ, SmerdonJE. 2013. A pseudoproxy evaluation of Bayesian hierarchical modeling and canonical correlation analysis for climate field reconstructions over europe. Journal of Climate26(3):851-867.
[46] WiersmaAP, RenssenH. 2006. Model data comparison for the 8.2 ka BP event: confirmation of a forcing mechanism by catastrophic drainage of Laurentide Lakes. Quaternary Science Reviews25(1‐2):63-88.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.