×

Asymptotically linear iterated function systems on the real line. (English) Zbl 1525.60090

Summary: Given a sequence of i.i.d. random functions \(\Psi_n :\mathbb{R}\to \mathbb{R}, n\in \mathbb{N}\), we consider the iterated function system and Markov chain, which is recursively defined by \(X_0^x :=x\) and \(X_n^x :=\Psi_{n-1}(X_{n-1}^x)\) for \(x\in \mathbb{R}\) and \(n\in \mathbb{N}\). Under the two basic assumptions that the \(\Psi_n\) are a.s. continuous at any point in \(\mathbb{R}\) and asymptotically linear at the “endpoints” \(\pm \infty\), we study the tail behavior of the stationary laws of such Markov chains by means of Markov renewal theory. Our approach provides an extension of Goldie’s implicit renewal theory [C. M. Goldie, Ann. Appl. Probab. 1, No. 1, 126–166 (1991; Zbl 0724.60076)] and can also be viewed as an adaptation of Kesten’s work on products of random matrices [H. Kesten, Acta Math. 131, 207–248 (1973; Zbl 0291.60029)] to one-dimensional function systems as described. Our results have applications in quite different areas of applied probability like queuing theory, econometrics, mathematical finance and population dynamics, for example, \(\mathsf{ARCH}\) models and random logistic transforms.

MSC:

60J05 Discrete-time Markov processes on general state spaces
60K15 Markov renewal processes, semi-Markov processes
60K05 Renewal theory
60H25 Random operators and equations (aspects of stochastic analysis)

References:

[1] Aldous, D. J. and Bandyopadhyay, A. (2005). A survey of max-type recursive distributional equations. Ann. Appl. Probab. 15 1047-1110. · Zbl 1105.60012 · doi:10.1214/105051605000000142
[2] ALSMEYER, G. (1994). On the Markov renewal theorem. Stochastic Process. Appl. 50 37-56. · Zbl 0789.60066 · doi:10.1016/0304-4149(94)90146-5
[3] ALSMEYER, G. (1997). The Markov renewal theorem and related results. Markov Process. Related Fields 3 103-127. · Zbl 0906.60052
[4] ALSMEYER, G. (2014). Quasistochastic matrices and Markov renewal theory. J. Appl. Probab. 51A 359-376. · Zbl 1325.60140 · doi:10.1239/jap/1417528486
[5] ALSMEYER, G. (2016). On the stationary tail index of iterated random Lipschitz functions. Stochastic Process. Appl. 126 209-233. · Zbl 1339.60019 · doi:10.1016/j.spa.2015.08.004
[6] ALSMEYER, G. and MENTEMEIER, S. (2012). Tail behaviour of stationary solutions of random difference equations: The case of regular matrices. J. Difference Equ. Appl. 18 1305-1332. · Zbl 1254.60071 · doi:10.1080/10236198.2011.571383
[7] ATHREYA, K. B. and DAI, J. (2000). Random logistic maps. I. J. Theoret. Probab. 13 595-608. · Zbl 0969.60069 · doi:10.1023/A:1007828804691
[8] ATHREYA, K. B., MCDONALD, D. and NEY, P. (1978). Limit theorems for semi-Markov processes and renewal theory for Markov chains. Ann. Probab. 6 788-797. · Zbl 0397.60052
[9] BORKOVEC, M. and KLÜPPELBERG, C. (2001). The tail of the stationary distribution of an autoregressive process with ARCH(1) errors. Ann. Appl. Probab. 11 1220-1241. · Zbl 1010.62083 · doi:10.1214/aoap/1015345401
[10] BROFFERIO, S. and BURACZEWSKI, D. (2015). On unbounded invariant measures of stochastic dynamical systems. Ann. Probab. 43 1456-1492. · Zbl 1352.37155 · doi:10.1214/13-AOP903
[11] BURACZEWSKI, D. and DAMEK, E. (2017). A simple proof of heavy tail estimates for affine type Lipschitz recursions. Stochastic Process. Appl. 127 657-668. · Zbl 1354.60025 · doi:10.1016/j.spa.2016.06.022
[12] BURACZEWSKI, D., DAMEK, E., GUIVARC’H, Y. and MENTEMEIER, S. (2014). On multidimensional Mandelbrot cascades. J. Difference Equ. Appl. 20 1523-1567. · Zbl 1312.15049 · doi:10.1080/10236198.2014.950259
[13] BURACZEWSKI, D., DAMEK, E. and MIKOSCH, T. (2016). Stochastic Models with Power-Law Tails: \[ The Equation X=AX+B\]. Springer Series in Operations Research and Financial Engineering. Springer, Cham. · Zbl 1357.60004 · doi:10.1007/978-3-319-29679-1
[14] Da Prato, G. and Zabczyk, J. (1996). Ergodicity for Infinite-Dimensional Systems. London Mathematical Society Lecture Note Series 229. Cambridge Univ. Press, Cambridge. · Zbl 0849.60052 · doi:10.1017/CBO9780511662829
[15] DAMEK, E., MATSUI, M. and ŚWIA̧TKOWSKI, W. (2019). Componentwise different tail solutions for bivariate stochastic recurrence equations with application to GARCH(1,1) processes. Colloq. Math. 155 227-254. · Zbl 1408.60040 · doi:10.4064/cm7313A-5-2018
[16] DAMEK, E. and ZIENKIEWICZ, J. (2018). Affine stochastic equation with triangular matrices. J. Difference Equ. Appl. 24 520-542. · Zbl 1427.60058 · doi:10.1080/10236198.2017.1422249
[17] DE SAPORTA, B. (2005). Tail of the stationary solution of the stochastic equation \[{Y_{n+1}}={a_n}{Y_n}+{b_n}\] with Markovian coefficients. Stochastic Process. Appl. 115 1954-1978. · Zbl 1096.60025 · doi:10.1016/j.spa.2005.06.009
[18] DIACONIS, P. and FREEDMAN, D. (1999). Iterated random functions. SIAM Rev. 41 45-76. · Zbl 0926.60056 · doi:10.1137/S0036144598338446
[19] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events: For Insurance and Finance. Applications of Mathematics (New York) 33. Springer, Berlin. · Zbl 0873.62116 · doi:10.1007/978-3-642-33483-2
[20] GOLDIE, C. M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 126-166. · Zbl 0724.60076
[21] GUÉGAN, D. and DIEBOLT, J. (1994). Probabilistic properties of the \(β\)-ARCH-model. Statist. Sinica 4 71-87. · Zbl 0826.60060
[22] GUIVARC’H, Y. and LE PAGE, É. (2016). Spectral gap properties for linear random walks and Pareto’s asymptotics for affine stochastic recursions. Ann. Inst. Henri Poincaré Probab. Stat. 52 503-574. · Zbl 1357.60010 · doi:10.1214/15-AIHP668
[23] JACOD, J. (1971). Théorème de renouvellement et classification pour les chaînes semi-markoviennes. Ann. Inst. Henri Poincaré B, Calc. Probab. Stat. 7 83-129. · Zbl 0217.50502
[24] KESTEN, H. (1973). Random difference equations and renewal theory for products of random matrices. Acta Math. 131 207-248. · Zbl 0291.60029 · doi:10.1007/BF02392040
[25] KESTEN, H. (1974). Renewal theory for functionals of a Markov chain with general state space. Ann. Probab. 2 355-386. · Zbl 0303.60090 · doi:10.1214/aop/1176996654
[26] MAERCKER, G. (1997). Statistical inference in conditional heteroscedastic autoregressive models Ph.D. thesis Technische Universität Braunschweig.
[27] MIREK, M. (2011). Heavy tail phenomenon and convergence to stable laws for iterated Lipschitz maps. Probab. Theory Related Fields 151 705-734. · Zbl 1236.60025 · doi:10.1007/s00440-010-0312-9
[28] SHURENKOV, V. M. (1984). On Markov renewal theory. Teor. Veroyatn. Primen. 29 248-263 · Zbl 0544.60082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.