×

Quantitative estimates for the Bakry-Ledoux isoperimetric inequality. II. (English) Zbl 1525.53042

In this paper, the authors apply previous estimates they obtained in [Comment. Math. Helv. 96, No. 4, 693–739 (2021; Zbl 1486.53049)] to some quantitative version of the isoperimetric inequality of D. Bakry and M. Ledoux [Invent. Math. 123, No. 2, 259–281 (1996; Zbl 0855.58011)]. More precisely, let \((M,g)\) be a weighted Riemannian manifold equipped with the measure \(m=e^{-\psi} \mathrm{vol}_g\) where \(\psi\in C^\infty(M)\). Assuming \(\mathrm{Ric}_\infty \geq 1\), the Bakry-Émery isoperimetric inequality holds true. The aim of the paper is to get an \(L^1\)-bound between \(\gamma=\frac{1}{\sqrt{2\pi}}\,e^{-x^2/2} dx\) and the push-forward measure \(u_*m\) of \(m\) by the guiding function \(u\) arising in the needle decomposition. They prove that \[ \|\rho e^{\psi_g}-1\|_{L^1(\gamma)} \leq C(\theta,\varepsilon) \delta^{(1-\varepsilon)/(9-3\varepsilon)}, \] where \(u_*m=\rho dx\) and \(\gamma=e^{-\psi_\varepsilon} dx\).
They also study in detail the one-dimensional case and prove, in particular, an \(L^p\)-bound with the sharp order \(\delta^{1/p}\).
{© 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.}

MSC:

53C20 Global Riemannian geometry, including pinching
49Q10 Optimization of shapes other than minimal surfaces
49Q20 Variational problems in a geometric measure-theoretic setting

References:

[1] D.Bakry and M.Ledoux, Lévy-Gromov’s isoperimetric inequality for an infinite‐dimensional diffusion generator, Invent. Math.123 (1996), 259-281. · Zbl 0855.58011
[2] J.Bertrand and M.Fathi, Stability of eigenvalues and observable diameter in \(\mathop{\text{RCD}}\nolimits (1,\infty )\) spaces, Preprint, arXiv:2107.05324, 2021.
[3] S.Bobkov, Extremal properties of half‐spaces for log‐concave distributions, Ann. Probab.24 (1996), 35-48. · Zbl 0859.60048
[4] S. G.Bobkov, N.Gozlan, C.Roberto, and P.‐M.Samson, Bounds on the deficit in the logarithmic Sobolev inequality, J. Funct. Anal.267 (2014), 4110-4138. · Zbl 1301.26018
[5] F.Cavalletti, F.Maggi, and A.Mondino, Quantitative isoperimetry à la Levy-Gromov, Comm. Pure Appl. Math.72 (2019), 1631-1677. · Zbl 1433.53066
[6] F.Cavalletti and A.Mondino, Sharp and rigid isoperimetric inequalities in metric‐measure spaces with lower Ricci curvature bounds, Invent. Math.208 (2017), 803-849. · Zbl 1375.53053
[7] F.Cavalletti, A.Mondino, and D.Semola, Quantitative Obata’s theorem, Anal. PDE. Preprint, arXiv:1910.06637, 2019.
[8] T. A.Courtade and M.Fathi, Stability of the Bakry-Émery theorem on \(\mathbb{R}^n\), J. Funct. Anal.279 (2020), 108523. · Zbl 1437.35005
[9] M.Fathi, I.Gentil, and J.Serres, Stability estimates for the sharp spectral gap bound under a curvature‐dimension condition, Preprint, arXiv:2202.03769, 2022.
[10] M.Fathi, E.Indrei, and M.Ledoux, Quantitative logarithmic Sobolev inequalities and stability estimates, Discrete Contin. Dyn. Syst.36 (2016), 6835-6853. · Zbl 1355.60094
[11] E.Indrei and D.Kim, Deficit estimates for the logarithmic Sobolev inequality, Differential Integral Equations34 (2021), 437-466. · Zbl 1513.35276
[12] E.Indrei and D.Marcon, A quantitative log‐Sobolev inequality for a two parameter family of functions, Int. Math. Res. Not.2014 (2014), 5563-5580. · Zbl 1317.46023
[13] B.Klartag, Needle decompositions in Riemannian geometry, Mem. Amer. Math. Soc.249 (2017), no. 1180. · Zbl 1457.53028
[14] C. H.Mai, Rigidity for the isoperimetric inequality of negative effective dimension on weighted Riemannian manifolds, Geom. Dedicata202 (2019), 213-232. · Zbl 1425.53049
[15] C. H.Mai and S.Ohta, Quantitative estimates for the Bakry-Ledoux isoperimetric inequality, Comment. Math. Helv.96 (2021), 693-739. · Zbl 1486.53049
[16] F.Morgan, Geometric measure theory, A beginner’s guide, 5th edn. Elsevier/Academic Press, Amsterdam, 2016. · Zbl 1338.49089
[17] S.Ohta, Needle decompositions and isoperimetric inequalities in Finsler geometry, J. Math. Soc. Japan70 (2018), 651-693. · Zbl 1395.53082
[18] S.Ohta, Comparison Finsler geometry, Springer Monographs in Mathematics, Springer, Cham, 2021. · Zbl 1487.53003
[19] S.Ohta and A.Takatsu, Equality in the logarithmic Sobolev inequality, Manuscripta Math.162 (2020), 271-282. · Zbl 1439.53039
[20] M.Talagrand, Transportation cost for Gaussian and other product measures, Geom. Funct. Anal.6 (1996), 587-600. · Zbl 0859.46030
[21] C.Villani, Optimal transport, old and new, Springer, Berlin, 2009. · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.