×

Algebraic independence results for colored multizeta values in characteristic \(p\). (English) Zbl 1525.11093

The paper under review deals with colored multizeta values (CMZs) and multipolylogarithms (CMPs) in positive characteristic. More precisely, these multizeta values are elements of \(\mathbb{F}_q (( \frac{1}{\theta} ))\), and generalize D. S. Thakur’s definition in the book entitled Function field arithmetic [River Edge, NJ: World Scientific (2004; Zbl 1061.11001)]. The author first gives a reinterpretation of CMPs as periods of mixed Carlitz motives (Proposition 4.3), and he rewrites CMZs as \(k\)-linear combinations of CMPs. Then, he studies linear independence of CMPs by using the techniques developed in [M. A. Papanikolas, Invent. Math. 171, No. 1, 123–174 (2008; Zbl 1235.11074)], and applies this to infer algebraic independence of large classes of CMZs, defined by \[ \zeta_{s_1\ldots, s_r} (\varepsilon_1,\ldots, \varepsilon_r)= \sum_{\stackrel{\deg a_1 >\ldots \deg a_r \geq 0}{a_i\in A_+} } \frac{\varepsilon_1^{\deg a_1} \cdots \varepsilon_r^{\deg a_r}}{a_1^{s_1}\cdots a_r^{s_r}}, \] where \(s_i\) are positive integers, \(\varepsilon_i \in \mathbb{F}_q^\times\) and \(A_+\) denotes the set of monic polynomials in \(\mathbb{F}_q[\theta ]\).

MSC:

11M38 Zeta and \(L\)-functions in characteristic \(p\)
11G09 Drinfel’d modules; higher-dimensional motives, etc.
Full Text: DOI

References:

[1] Anderson, G. W., \(t\)-motives, Duke Math. J.53(2) (1986) 457-502. · Zbl 0679.14001
[2] Anderson, G. W. and Thakur, D. S., Tensor powers of the Carlitz module and zeta values, Ann. of Math.132(1) (1990) 159-191. · Zbl 0713.11082
[3] Anderson, G. W. and Thakur, D. S., Multizeta values for \(\mathbb{F}_q[t]\), their period interpretation, and relations between them, Int. Math. Res. Not.2009(11) (2009) 2038-2055. · Zbl 1183.11052
[4] Carlitz, L., On certain functions connected with polynomials in a Galois field, Duke. Math. J.1 (1935) 137-168. · Zbl 0012.04904
[5] Chang, C.-Y., Linear independence of monomials of multizeta values in positive characteristic, Compos. Math.150(11) (2014) 1789-1808. · Zbl 1306.11058
[6] Chang, C.-Y. and Yu, J., Determination of algebraic relations among special zeta values in positive characteristic, Adv. Math.216(1) (2007) 321-345. · Zbl 1123.11025
[7] Chen, H.-J., On shuffle of double Eisenstein series in positive characteristic, J. Théor. Nombres Bordeaux29(3) (2017) 815-825. · Zbl 1432.11118
[8] Conrad, B., The structure of solvable groups over general fields, in Autours des Schémas en Groupes, Vol. 2, , Vol. 46 (Société Mathématique de France, Paris, 2015), pp. 159-192. · Zbl 1356.20026
[9] Dac, T. N., On Zagier-Hoffman’s conjectures in positive characteristic, Ann. of Math.194(1) (2021) 361-392. · Zbl 1503.11120
[10] J. I. B. Gil and J. Fresan, Multiple zeta values: from numbers to motives, Clay Math. Proc. (in press), http://javier.fresan.perso.math.cnrs.fr/mzv.pdf.
[11] A. B. Goncharov, Multiple polylogarithms and mixed Tate motives, preprint (2001), arXiv:math/0103059.
[12] Goss, D., \(v\)-Adic zeta functions, \(L\)-series and measure for function fields, Invent. Math.55 (1979) 107-119. · Zbl 0402.12007
[13] Harada, R., Alternating multizeta values in positive characteristic, Math. Z.298 (2020) 1263-1291. · Zbl 1483.11194
[14] Hartl, U. and Juschka, A.-K., Pink’s theory of Hodge structures and the Hodge conjecture over function fields, in \(t\)-Motives: Hodge Structures, Transcendence and Other Motivic Aspects, (European Mathematical Society, 2020), pp. 31-182. · Zbl 1451.14013
[15] Mishiba, Y., On algebraic independence of certain multizeta values in characteristic \(p\), J. Number Theory173 (2017) 512-528. · Zbl 1421.11068
[16] Papanikolas, M. A., Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms, Invent. Math.171(1) (2008) 123-174. · Zbl 1235.11074
[17] Rodríguez, J. A. L. and Thakur, D. S., Zeta-like multizeta values for \(\mathbb{F}_q[t]\), Indian J. Pure Appl. Math.45(5) (2014) 787-801. · Zbl 1365.11104
[18] K. Tasaka, Finite and symmetric colored multiple zeta values and multiple harmonic \(q\)-series at roots of unity, preprint (2019), arXiv:1907.01935. · Zbl 1469.11334
[19] Thakur, D. S., Function Field Arithmetic (World Scientific, River Edge, NJ, 2004). · Zbl 1061.11001
[20] Thakur, D. S., Power sums with applications to multizeta and zeta zero distribution for \(\mathbb{F}_q[t]\), Finite Fields Appl.15(4) (2009) 534-552. · Zbl 1228.11139
[21] Thakur, D. S., Relations between multizeta values for \(\mathbb{F}_q[t]\), Int. Math. Res. Not.2009(12) (2009) 2318-2346. · Zbl 1189.11032
[22] Todd, G., A conjectural characterization for \(\mathbb{F}_q(t)\)-linear relations between multizeta values, J. Number Theory187 (2018) 264-287. · Zbl 1401.11125
[23] Wade, L. I., Certain quantities transcendental over \(GF( p^n,x)\), Duke Math. J.8 (1941) 701-720. · Zbl 0063.08101
[24] M. Waldschmidt, Lectures on multiple zeta values, Special year in number theory at IMSc (2011).
[25] Yu, J., Transcendence and special zeta values in characteristic \(p\), Ann. of Math.134(1) (1991) 1-23. · Zbl 0734.11040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.