×

Hybrid shrinking projection extragradient-like algorithms for equilibrium and fixed point problems. (English) Zbl 1524.90245

Summary: Based on the extragradient-like method combined with shrinking projection, we propose two algorithms, the first algorithm is obtained using sequential computation of extragradient-like method and the second algorithm is obtained using parallel computation of extragradient-like method, to find a common point of the set of fixed points of a nonexpansive mapping and the solution set of the equilibrium problem of a bifunction given as a sum of the finite number of Hölder continuous bifunctions. The convergence theorems for iterative sequences generated by the algorithms are established under widely used assumptions for the bifunction and its summands

MSC:

90C25 Convex programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
65K10 Numerical optimization and variational techniques
Full Text: DOI

References:

[1] S. Alizadeh and F. Moradlou, A strong convergence theorem for equilibrium problems and generalized hybrid mappings, Mediterr. J. Math., 13 (2016), 379-390. · Zbl 1336.47061
[2] P. N. Anh, A hybrid extragradient method extended to fixed point problems and equilibrium problems, Optimization, 62 (2013), 271-283. · Zbl 1290.90084
[3] P. N. Anh and L. D. Muu, A hybrid subgradient algorithm for nonexpansive mappings and equilibrium problems, Optim. Lett., 8 (2014), 727-738. · Zbl 1302.65152
[4] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, New York: Springer., 408, 2011. · Zbl 1218.47001
[5] L. C. Ceng, S. M. Guu, H. Y. Hu, and J. C. Yao, Hybrid shrinking projection method for a generalized equilibrium problem, a maximal monotone operator and a countable family of relatively nonexpansive mappings, Comput. Math. Appl., 61 (2011), 2468-2479. · Zbl 1368.47047
[6] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136. · Zbl 1109.90079
[7] J. Contreras, M. Klusch, and J. B. Krawczyk, Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets, IEEE Transactions on Power Systems., 19 (2004), 195-206.
[8] P. Daniele, F. Giannessi, and A. eds Maugeri, Equilibrium problems and variational models, Dordrecht: Kluwer Academic Publishers, 68, 2003. · Zbl 1030.00031
[9] K. Fan, A minimax inequality and applications, Inequalities III (O. Shisha, ed.). Academic Press, New York; 1972.
[10] S. D. Flåm and A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Program., 78 (1996), 29-41. · Zbl 0890.90150
[11] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, vol. 28. Cambridge University Press, 1990. · Zbl 0708.47031
[12] T. N. Hai and N. T. Vinh, Two new splitting algorithms for equilibrium problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 111 (2017), 1051-1069. · Zbl 1422.65092
[13] D. V. Hieu, A new shrinking gradient-like projection method for equilibrium problems, Optimization, 66 (2017), 2291-2307. · Zbl 1384.90120
[14] C. Martinez-Yanes and H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Non-linear Anal., 11 (2006), 2400-2411. · Zbl 1105.47060
[15] A. Moudafi and M. Théra, Proximal and dynamical approaches to equilibrium problems, InIll-Posed Variational Problems and Regularization Techniques. Springer, Berlin, Heidelberg, (1999), 187-201 · Zbl 0944.65080
[16] A. Moudafi, A Barycentric projected-subgradient algorithm for equilibrium problems, J. Nonlinear Var. Anal., 1 (2017), 43-59. · Zbl 1398.90185
[17] A. Moudafi, On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces, J. Math. Anal. Appl., 359 (2009), 508-513. · Zbl 1176.90644
[18] K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279 (2003), 372-379. · Zbl 1035.47048
[19] K. A. Pham and N. H. Trinh, Splitting extragradient-like algorithms for strongly pseudomonotone equilibrium problems, Numer. Algorithms., 76 (2017), 67-91. · Zbl 06788827
[20] S. Plubtieng, R. Punpaeng, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 336 (2007), 455-469. · Zbl 1127.47053
[21] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. control optim., 14 (1976), 877-898. · Zbl 0358.90053
[22] P. Santos, S. Scheimberg, An inexact subgradient algorithm for equilibrium problems, Compu. Appl. Math., 30 (2011), 91-107. · Zbl 1242.90265
[23] A. Tada and W. Takahashi, Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem, J. Optim. Theory Appl., 133 (2007), 359-370. · Zbl 1147.47052
[24] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point prob-lems in Hilbert spaces, J. Math. Anal. Appl., 331 (2007), 506-515. · Zbl 1122.47056
[25] W. Takahashi, Y. Takeuchi, and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 341 (2008), 276-286. · Zbl 1134.47052
[26] D. Van Hieu, L. D. Muu, and P. K. Anh, Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings, Numer. Algorithms., 47 (2016), 197-217. · Zbl 1367.65089
[27] U. Witthayarat, A. A. Abdou, and Y. J. Cho, Shrinking projection methods for solving split equilibrium problems and fixed point problems for asymptotically nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl., 2015 (2015), 1-14. · Zbl 1338.54233
[28] T. Zang, Y. Xiang, and J. Yang, The tripartite game model for electricity pricing in consideration of the power quality, Energies. , 10 (2017), 20-25.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.