×

Solitary waves in the excitable Burridge-Knopoff model. (English) Zbl 1524.86027

Summary: The Burridge-Knopoff model is a lattice differential equation describing a chain of blocks connected by springs and pulled over a surface. This model was originally introduced to investigate nonlinear effects arising in the dynamics of earthquake faults. One of the main ingredients of the model is a nonlinear velocity-dependent friction force between the blocks and the fixed surface. For some classes of non-monotonic friction forces, the system displays a large response to perturbations above a threshold, which is characteristic of excitable dynamics. Using extensive numerical simulations, we show that this response corresponds to the propagation of a solitary wave for a broad range of friction laws (smooth or nonsmooth) and parameter values. These solitary waves develop shock-like profiles at large coupling (a phenomenon connected with the existence of weak solutions in a formal continuum limit) and propagation failure occurs at low coupling. We introduce a simplified piecewise linear friction law (reminiscent of the McKean nonlinearity for excitable cells) which allows us to obtain an analytical expression of solitary waves and study some of their qualitative properties, such as wave speed and propagation failure. We propose a possible physical realization of this system as a chain of impulsively forced mechanical oscillators. In certain parameter regimes, non-monotonic friction forces can also give rise to bistability between the ground state and limit-cycle oscillations and allow for the propagation of fronts connecting these two stable states.

MSC:

86A15 Seismology (including tsunami modeling), earthquakes
35C08 Soliton solutions

Software:

QUADPACK; KELLEY; ODEPACK
Full Text: DOI

References:

[1] Kagan, Y. Y., Observational evidence for earthquakes as a nonlinear dynamic process, Physica D, 77, 160-192 (1994)
[2] Scholz, C., The Mechanics of Earthquakes and Faulting (2002), Cambridge University Press
[3] Kaproth, B.; Marone, C., Slow earthquakes, preseismic velocity changes, and the origin of slow frictional stick-slip, Science, 341, 1229-1232 (2013)
[4] Burridge, R.; Knopoff, L., Model and theoretical seismicity, Bull. Seismol. Soc. Amer., 57, 341-371 (1967)
[5] Huang, W.; Wang, X., Biomimetic design of elastomer surface pattern for friction control under wet conditions, Bioinspir. Biomim., 8, 046001 (2013)
[6] Carlson, J. M.; Langer, J. S., Properties of earthquakes generated by fault dynamics, Phys. Rev. Lett., 62, 2632 (1989)
[7] de Arcangelis, L.; Godano, C.; Grasso, J. R.; Lippiello, E., Statistical physics approach to earthquake occurrence and forecasting, Phys. Rep., 628, 1-91 (2016)
[8] P. Moschetta, C. Mascia, Assessment of Predictor-Corrector strategy for the Burridge-Knopoff model, 2016. arXiv:1607.08267; P. Moschetta, C. Mascia, Assessment of Predictor-Corrector strategy for the Burridge-Knopoff model, 2016. arXiv:1607.08267
[9] Helman, J. S.; Baltensperger, W.; Holyst, J. A., Simple model for dry friction, Phys. Rev. B, 49, 3831-3838 (1994)
[10] Weiss, M.; Elmer, F.-J., Dry friction in the Frenkel-Kontorova-Tomlinson model: dynamical properties, Z. Phys. B Condens. Matter, 104, 1, 55-69 (1997)
[11] Vanossi, A.; Manini, N.; Urbakh, M.; Zapperi, S.; Tosatti, E., Colloquium: Modeling friction: From nanoscale to mesoscale, Rev. Modern Phys., 85, 529-552 (2013)
[12] Bar-Sinai, Y.; Spatschek, R.; Brener, E. A.; Bouchbinder, E., On the velocity-strengthening behaviour of dry friction, J. Geophys. Res. Solid Earth, 119, 1738-1748 (2014)
[13] Marone, C., Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci., 26, 1, 643-696 (1998)
[14] Blau, P. J., Friction Science and Technology: From Concepts to Applications (2009), CRC Press
[15] Chau, K., Landslides modeled as bifurcations of creeping slopes with nonlinear friction law, Int. J. Solids Struct., 32, 23, 3451-3464 (1995) · Zbl 0876.73055
[16] Di Bartolomeo, M.; Massi, F.; Baillet, L.; Culla, A.; Fregolent, A., Interplay between local frictional contact dynamics and global dynamics of a mechanical system, (Kerschen, Gaëtan, Nonlinear Dynamics, Volume 1: Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, 2015 (2016), Springer International Publishing: Springer International Publishing Cham), 1-10
[17] Putelat, T.; Dawes, J.; Willis, J., Regimes of frictional sliding of a spring-block system, J. Mech. Phys. Solids, 58, 27-53 (2010) · Zbl 1193.70015
[18] Erickson, B.; Birnir, B.; Lavallée, D., Periodicity, chaos and localization in a Burridge-Knopoff model of an earthquake with rate-and-state friction, Geophys. J. Int., 187, 178-198 (2011)
[19] Erickson, B.; Birnir, B.; Lavallée, D., A model for aperiodicity in earthquakes, Nonlinear Processes Geophys., 15, 1-12 (2008)
[20] Heslot, F.; Baumberger, T.; Perrin, B.; Caroli, C.; Caroli, B., Creep, stick-slip, and dry friction dynamics: Experiments and a heuristic model, Phys. Rev. E, 49, 4973-4988 (1994)
[21] Wang, J.; Hwang, R., One-dimensional dynamic simulations of slip complexity of earthquake faults, Earth Planets Space, 53, 91-100 (2001)
[22] Ohmura, A.; Kawamura, H., Rate- and state-dependent friction law and statistical properties of earthquakes, Europhys. Lett., 77, 69001 (2007)
[23] Lebellego, M., Phénomènes Ondulatoires dans un Modèle Discret de Faille Sismique (2011), Université de Toulouse, (Ph.D. thesis)
[24] Melosh, H. J., Dynamical weakening of faults by acoustic fluidization, Nature, 379, 6566, 601-606 (1996)
[25] Giacco, F.; Saggese, L.; de Arcangelis, L.; Lippiello, E.; Pica Ciamarra, M., Dynamic weakening by acoustic fluidization during stick-slip motion, Phys. Rev. Lett., 115, 128001 (2015)
[26] Wang, J., One-dimensional dynamical modelling of earthquakes: a review, Terr. Atmos. Ocean. Sci., 19, 183-203 (2008)
[27] Acary, V.; Brogliato, B., Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics (2008), Springer · Zbl 1173.74001
[28] Bastien, J.; Lamarque, C., Theoretical study of a chain sliding on a fixed support, Math. Probl. Eng., 2009, 19 (2009) · Zbl 1185.74100
[29] Xiong, X.; Kikuuwe, R.; Yamamoto, M., Implicit Euler simulation of one-dimensional Burridge-Knopoff model of earthquakes with set-valued friction laws, Adv. Comput. Math., 41, 1039-1057 (2015) · Zbl 1350.49044
[30] Vorvolakos, K.; Chaudhury, M. K., The effects of molecular weight and temperature on the kinetic friction of silicone rubbers, Langmuir, 19, 6778-6787 (2003)
[31] Gong, J. P., Friction and Lubrication of Hydrogels - its Richness and Complexity, Vol. 2, 544-552 (2006), The Royal Society of Chemistry
[32] Carlson, J. M.; Langer, J. S., Mechanical model of an earthquake fault, Phys. Rev. A, 40, 6470-6484 (1989)
[33] Schmittbuhl, J.; Vilotte, J. P.; Roux, S., Propagative macrodislocation modes in an earthquake fault model, Europhys. Lett., 21, 375-380 (1993)
[34] Kostić, S.; Vasović, N.; Franović, I.; Todorović, K., Dynamics of simple earthquake model with time delay and variation of friction strength, Nonlinear Processes Geophys., 20, 5, 857-865 (2013)
[35] Español, P., Propagative slipping modes in a spring-block model, Phys. Rev. E, 50, 227-235 (1994)
[36] Schmittbuhl, J.; Vilotte, J. P.; Roux, S., A dissipation-based analysis of an earthquake fault model, J. Geophys. Res., 101, 27741-27764 (1996)
[37] Estrin, Y.; Bréchet, Y., On a model of frictional sliding, Pure Appl. Geophys., 147, 745-762 (1996)
[38] Shimamoto, T., Transition between frictional slip and ductile flow for halite shear zones at room temperature, Science, 231, 711-714 (1986)
[39] Wu-Bavouzet, F.; Clain-Burckbuchler, J.; Buguin, A.; De Gennes, P.-G.; Brochard-Wyart, F., Stick-Slip: wet versus dry, J. Adhes., 83, 761-784 (2007)
[40] FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 445-466 (1961)
[41] Zeeman, E. C., Differential equations for the heartbeat and nerve impulse, (Towards a Theoretical Biology, Vol. 4 (1972), Edinburgh University Press Edinburgh), 8-67
[42] Feingold, M.; Gonzalez, D. L.; Piro, O.; Viturro, H., Phase locking, period doubling, and chaotic phenomena in externally driven excitable systems, Phys. Rev. A, 37, 4060-4063 (1988)
[43] Izhikevich, E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (2007), The MIT Press
[44] Cartwright, J. H.E.; Hernández-García, E.; Piro, O., Burridge-Knopoff models as elastic excitable media, Phys. Rev. Lett., 79, 527-530 (1997)
[45] Cartwright, J. H.E.; Eguíluz, V. M.; Hernández-García, E.; Piro, O., Dynamics of elastic excitable media, Int. J. Bifurcation Chaos, 9, 2197-2202 (1999) · Zbl 1192.74204
[46] Xu, H. J.; Knopoff, L., Periodicity and chaos in a one-dimensional dynamical model of earthquakes, Phys. Rev. E, 50, 3577-3581 (1994)
[47] Muratov, C. B., Traveling wave solutions in the Burridge-Knopoff model, Phys. Rev. E, 59, 3847-3857 (1999)
[48] Bouchbinder, E.; Brener, E. A.; Barel, I.; Urbakh, M., Slow cracklike dynamics at the onset of frictional sliding, Phys. Rev. Lett., 107, 235501 (2011)
[49] Bar-Sinai, Y.; Spatschek, R.; Brener, E. A.; Bouchbinder, E., Instabilities at frictional interfaces: Creep patches, nucleation, and rupture fronts, Phys. Rev. E, 88, 060403 (2013)
[50] Bar-Sinai, Y.; Spatschek, R.; Brener, E. A.; Bouchbinder, E., Velocity-strengthening friction significantly affects interfacial dynamics, strength and dissipation, Sci. Rep., 5, 7841 (2015)
[51] Comte, J. C.; Tchofo-Dinda, P.; Remoissenet, M., Discrete Burridge-Knopoff model, with exact solitonic or compactlike traveling wave solution, Phys. Rev. E, 65, 026615 (2002)
[52] Morales, J. E.; James, G.; Tonnelier, A., Traveling waves in a spring-block chain sliding down a slope, Phys. Rev. E, 96, 012227 (2017)
[53] McKean Jr., H. P., Nagumo’s equation, Adv. Math., 4, 209-223 (1970) · Zbl 0202.16203
[54] Rinzel, J.; Keller, J. B., Traveling wave solutions of a nerve conduction equation, Biophys. J., 13, 1313-1337 (1973)
[55] Zemskov, E. P.; Zykov, E. P.; Kassner, V. S.; Muller, S. C., Stability of travelling fronts in a piecewise-linear reaction-diffusion system, Nonlinearity, 13, 2063-2076 (2000) · Zbl 0973.35105
[56] Biktashev, V. N.; Tsyganov, M. A., Solitary waves in excitable systems with cross-diffusion, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461, 3711-3730 (2005) · Zbl 1370.35174
[57] Celli, V.; Flytzanis, N., Motion of a screw dislocation in a crystal, J. Appl. Phys., 41, 4443-4447 (1970)
[58] Flytzanis, N.; Crowley, S.; Celli, V., High velocity dislocation motion and interatomic force law, J. Phys. Chem. Solids, 38, 539-552 (1977)
[59] Fáth, G., Propagation failure of traveling waves in a discrete bistable medium, Physica D, 116, 176-190 (1998) · Zbl 0935.35070
[60] Cahn, J. W.; Mallet-Paret, J.; Van Vleck, E. S., Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice, SIAM J. Appl. Math., 59, 455-493 (1998) · Zbl 0917.34052
[61] Tonnelier, A., McKean caricature of the FitzHugh-Nagumo model: traveling pulses in a discrete diffusive medium, Phys. Rev. E, 67, 036105 (2003)
[62] Elmer, C. E.; Van Vleck, E. S., Spatially discrete FitzHugh-Nagumo equations, SIAM J. Appl. Math., 65, 1153-1174 (2005) · Zbl 1089.34052
[63] Truskinovsky, L.; Vainchtein, A., Kinetics of martensitic phase transitions: Lattice model, SIAM J. Appl. Math., 66, 533-553 (2005) · Zbl 1136.74362
[64] Schwetlick, H.; Zimmer, J., Existence of dynamic phase transitions in a one-dimensional lattice model with piecewise quadratic interaction potential, SIAM J. Math. Anal., 41, 1231-1271 (2009) · Zbl 1193.37100
[65] Atkinson, W.; Cabrera, N., Motion of a Frenkel-Kontorova dislocation in a one-dimensional crystal, Phys. Rev. A, 138, 763-766 (1965)
[66] Kresse, O.; Truskinovsky, L., Mobility of lattice defects: discrete and continuum approaches, J. Mech. Phys. Solids, 51, 1305-1332 (2003) · Zbl 1077.74512
[67] Vainchtein, A.; Van Vleck, E. S., Nucleation and propagation of phase mixtures in a bistable chain, Phys. Rev. B, 79 (2009), 144123-1-144123-11
[68] Vainchtein, A.; Van Vleck, E. S.; Zhang, A., Propagation of periodic patterns in a discrete system with competing interactions, SIAM J. Appl. Dyn. Syst., 14, 523-555 (2015) · Zbl 1387.34108
[69] Hupkes, H. J.; Sandstede, B., Travelling pulses for the discrete FitzHugh-Nagumo system, SIAM J. Appl. Dyn. Syst., 9, 827-882 (2010) · Zbl 1211.34007
[70] Zhi-fen, Z.; Tong-ren, D.; Wen-zao, H.; Zhen-xi, D., (Qualitative Theory of Differential Equations. Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, vol. 101 (1992), American Mathematical Society: American Mathematical Society Providence, Rhode Island) · Zbl 0779.34001
[71] Llibre, J.; Ordóñez, M.; Ponce, E., On the existence and uniqueness of limit cycles in planar continuous piecewise linear systems without symmetry, Nonlinear Anal. RWA, 14, 2002-2012 (2013) · Zbl 1293.34047
[72] Hindmarsh, A. C., ODEPACK, a systematized collection of ODE solvers, (Stepleman, R. S., Scientific Computing. Scientific Computing, IMACS Transactions on Scientific Computation, vol. 1 (1983), North-Holland), 55-64
[73] Keener, J. P., Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47, 556-572 (1987) · Zbl 0649.34019
[74] Ermentrout, G. B.; Terman, D. H., Mathematical Foundations of Neuroscience (2010), Springer · Zbl 1320.92002
[75] Piessens, R.; de Doncker-Kapenga, E.; Überhuber, C.; Kahaner, D., (QUADPACK. A Subroutine Package for Automatic Integration. QUADPACK. A Subroutine Package for Automatic Integration, Springer Series in Computational Mathematics, vol. 1 (1983), Springer-Verlag: Springer-Verlag Berlin Heidelberg) · Zbl 0508.65005
[76] Kelley, C., (Iterative Methods for Optimization. Iterative Methods for Optimization, Frontiers in Applied Mathematics (1999), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia) · Zbl 0934.90082
[77] Herrmann, M.; Matthies, K.; Schwetlick, H.; Zimmer, J., Subsonic phase transition waves in bistable lattices models with small spinodal region, SIAM J. Math. Anal., 45, 2625-2645 (2013) · Zbl 1287.37054
[78] Earmme, Y.; Weiner, J., Dislocation dynamics in the modified Frenkel-Kontorova model, J. Appl. Phys., 48, 3317-3331 (1977)
[79] Kresse, O.; Truskinovsky, L., Lattice friction for crystalline defects: From dislocations to cracks, J. Mech. Phys. Solids, 52, 2521-2543 (2004) · Zbl 1084.74005
[80] Slepyan, L. I.; Cherkaev, A.; Cherkaev, E., Transition waves in bistable structures. II. Analytical solution: wave speed and energy dissipation, J. Mech. Phys. Solids, 53, 407-436 (2005) · Zbl 1146.74336
[81] Vainchtein, A., The role of spinodal region in the kinetics of lattice phase transitions, J. Mech. Phys. Solids, 58, 227-240 (2010) · Zbl 1193.82042
[82] Truskinovsky, L.; Vainchtein, A., Solitary waves in a nonintegrable Fermi-Pasta-Ulam chain, Phys. Rev. E, 90, 42903 (2014)
[83] Collins, M. A., A quasicontinuum approximation for solitons in an atomic chain, Chem. Phys. Lett., 77, 342-347 (1981)
[84] Rosenau, P., Dynamics of nonlinear mass-spring chains near the continuum limit, Phys. Lett. A, 118, 222-227 (1986)
[85] Argentina, M.; Coullet, P.; Krinsky, V., Head-on collisions of waves in an excitable FitzHugh-Nagumo system: a transition from wave annihilation to classical wave behavior, J. Theoret. Biol., 205, 47-52 (2000)
[86] Tsyganov, M. A.; Biktashev, V. N.; Brindley, J.; Holden, A. V.; Ivanitsky, G. R., Waves in systems with cross-diffusion as a new class of nonlinear waves, Phys.-Usp., 50, 263-286 (2007)
[87] Tsyganov, M. A.; Biktashev, V. N., Classification of wave regimes in excitable systems with linear cross-diffusion, Phys. Rev. E, 90, 062912 (2014)
[88] Venturi, N. A.; Nori, F., Marginal stability and chaos in coupled faults modelled by nonlinear circuits, Phys. Rev. Lett., 74, 74-77 (1995)
[89] Morales Morales, J. E., Ondes Localisées dans des Systèmes Mécaniques Discrets Excitables (2016), Université de Grenoble, (Ph.D. thesis)
[90] Harris, R. A., Large earthquakes and creeping faults, Rev. Geophys., 55, 1, 169-198 (2017)
[91] Sato, M.; Hubbard, B. E.; English, L. Q.; Sievers, A. J.; Ilic, B.; Czaplewski, D. A.; Craighead, H. G., Study of intrinsic localized vibrational modes in micromechanical oscillator arrays, Chaos, 13, 2, 702-715 (2003)
[92] Juillard, J.; Bonnoit, A.; Avignon, E.; Hentz, S.; Colinet, E., Large amplitude dynamics of micro-/nanomechanical resonators actuated with electrostatic pulses, J. Appl. Phys., 107, 1, 014907 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.