×

Study of acoustic wave propagation in micro- and nanochannels. (English) Zbl 1524.76391

Summary: The acoustic wave propagating through porous nanomaterials like aerogels, microelectromechanical systems (MEMS) devices, high-frequency acoustic transmission devices or near-vacuum systems, possesses relatively high Knudsen numbers, normally in the transition regime \((0.1<\mathrm{Kn}<10)\). In this regime, the characteristic length of micro- and nanochannels is comparable with the mean free path of monatomic gases, in which the classical continuum theory breaks down. In this paper, a theoretical model with the second-order slip boundary is proposed to describe acoustic wave propagation in micro- and nanochannels. The proposed theoretical model provides analytical solutions for the complex wavenumber, attenuation coefficient and other related transmission variables as function of a Knudsen number in the early transition regime \((0.1 <\mathrm{Kn}<1.0)\), which are valuable for understanding acoustics at micro- and nanoscales. In addition, numerical simulations using the molecular-based direct simulation Monte Carlo (DSMC) method for dilute argon gas are carried out to validate the model and its analytical results. Findings suggest that such a model can effectively predict the acoustic behaviour in micro- and nanochannels.

MSC:

76Q05 Hydro- and aero-acoustics
65C05 Monte Carlo methods
76S05 Flows in porous media; filtration; seepage
76M28 Particle methods and lattice-gas methods
Full Text: DOI

References:

[1] Gad-el Hak, M., The MEMS HandBook (2001), CRC press · Zbl 1060.74001
[2] Park, J. H.; Bahukudumbi, P.; Beskok, A., Phys. Fluids (1994-Present), 16, 2, 317-330 (2004)
[3] Allard, J.; Atalla, N., Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e (2009), John Wiley & Sons
[4] Gad-el Hak, M., J. Fluids Eng., 121, 1, 5-33 (1999)
[5] Sharipov, F.; Kalempa, D., J. Acoust. Soc. Am., 124, 4, 1993-2001 (2008)
[6] Guild, M. D.; García-Chocano, V. M.; Sánchez-Dehesa, J.; Martin, T. P.; Calvo, D. C.; Orris, G. J., Phys. Rev. Appl., 5, 3, 034012 (2016)
[7] Yang, Z.; Gao, F.; Shi, X.; Lin, X.; Gao, Z.; Chong, Y.; Zhang, B., Phys. Rev. Lett., 114, 11, 114301 (2015)
[8] Greenspan, M., J. Acoust. Soc. Am., 28, 4, 644-648 (1956)
[9] Meyer, E.; Sessler, G., Z. Phys., 149, 1, 15-39 (1957)
[10] Loyalka, S.; Cheng, T., Phys. Fluids (1958-1988), 22, 5, 830-836 (1979) · Zbl 0396.76062
[11] Sharipov, F.; Marques Jr., W.; Kremer, G., J. Acoust. Soc. Am., 112, 2, 395-401 (2002)
[12] Kozlov, V. F.; Fedorov, A. V.; Malmuth, N. D., J. Acoust. Soc. Am., 117, 6, 3402-3411 (2005)
[13] Umnova, O.; Tsiklauri, D.; Venegas, R., J. Acoust. Soc. Am., 126, 4, 1850-1861 (2009)
[14] Kalempa, D.; Sharipov, F., Phys. Fluids (1994-Present), 21, 10, 103601 (2009)
[15] Desvillettes, L.; Lorenzani, S., Phys. Fluids (1994-Present), 24, 9, 092001 (2012)
[16] Struchtrup, H., Contin. Mech. Thermodyn., 24, 4-6, 361-376 (2012)
[17] Danforth, A. L.; Long, L. N., J. Acoust. Soc. Am., 116, 4, 1948-1955 (2004)
[18] Hadjiconstantinou, N.; Simek, O., J. Fluid Mech., 488, 399-408 (2003) · Zbl 1063.76642
[19] Crandall, I. B., Theory of Vibrating Systems and Sound (1954), D. Van Nostrand Company · JFM 54.0847.01
[20] Stinson, M. R., J. Acoust. Soc. Am., 89, 2, 550-558 (1991)
[21] Hadjiconstantinou, N. G., Microscale Thermophys. Eng., 9, 2, 137-153 (2005)
[22] Lorenzani, S., Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 369, 1944, 2228-2236 (2011) · Zbl 1223.76083
[23] Ohwada, T.; Sone, Y.; Aoki, K., Phy. Fluids A (1989-1993), 1, 9, 1588-1599 (1989) · Zbl 0695.76032
[24] Siewert, C., Phys. Fluids (1994-Present), 15, 6, 1696-1701 (2003)
[25] Buick, J.; Cosgrove, J., J. Phys. A: Math. Gen., 39, 44, 13807 (2006) · Zbl 1104.76069
[26] Huang, H.; Lee, T.; Shu, C., Internat. J. Numer. Methods Heat Fluid Flow, 17, 6, 587-607 (2007) · Zbl 1231.76233
[27] Chen, S.; Tian, Z., Int. J. Heat Fluid Flow, 31, 2, 227-235 (2010)
[28] Loyalka, S.; Petrellis, N.; Storvick, T., Phys. Fluids (1958-1988), 18, 9, 1094-1099 (1975) · Zbl 0315.76037
[29] Chew, Y.; Niu, X.; Shu, C., Internat. J. Numer. Methods Fluids, 50, 11, 1321-1334 (2006) · Zbl 1095.76045
[30] Hansen, J. S.; Lemarchand, A., Mol. Simul., 32, 6, 419-426 (2006) · Zbl 1098.76054
[31] Waisman, H.; Fish, J., Comput. Methods Appl. Mech. Engrg., 195, 44, 6542-6559 (2006) · Zbl 1126.82001
[32] Greathouse, J. A.; Cygan, R. T.; Simmons, B. A., J. Phys. Chem. B, 110, 13, 6428-6431 (2006)
[33] Bird, G. A., Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows, 128 (1994), Clarendon: Clarendon Oxford
[34] Sharma, A.; Long, L. N., J. Comput. Phys., 200, 1, 211-237 (2004) · Zbl 1179.76063
[35] Wang, R.-J.; Xu, K., Acta Mech. Sinica, 28, 4, 1022-1029 (2012) · Zbl 1293.76117
[36] Shen, C.; Fan, J.; Xie, C., J. Comput. Phys., 189, 2, 512-526 (2003) · Zbl 1061.76515
[37] Al-Mohssen, H. A.; Hadjiconstantinou, N. G., ESAIM Math. Model. Numer. Anal., 44, 5, 1069-1083 (2010) · Zbl 1200.82051
[38] Hadjiconstantinou, N. G.; Garcia, A. L., Phys. Fluids (1994-Present), 13, 4, 1040-1046 (2001) · Zbl 1184.76205
[39] Cercignani, C., In the Boltzmann Equation and Its Applications, 40-103 (1988), Springer · Zbl 0646.76001
[40] Hadjiconstantinou, N. G., Phys. Fluids (1994-Present), 18, 11, 111301 (2006) · Zbl 1146.76400
[41] Radtke, G. A.; Hadjiconstantinou, N. G.; Takata, S.; Aoki, K., J. Fluid Mech., 707, 331-341 (2012) · Zbl 1275.76180
[42] Sone, Y.; Ohwada, T.; Aoki, K., Phys. Fluids A (1989-1993), 1, 2, 363-370 (1989) · Zbl 0661.76082
[43] Li, Q.; He, Y.; Tang, G.; Tao, W., Microfluidics Nanofluidics, 10, 3, 607-618 (2011)
[44] Colin, C. A.; Stéphane, ., Microscale Thermophys. Eng., 5, 1, 41-54 (2001)
[45] Wu, L., Appl. Phys. Lett., 93, 25, 253103 (2008)
[46] Wagner, W., J. Stat. Phys., 66, 3-4, 1011-1044 (1992) · Zbl 0899.76312
[47] Chapman, S., Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character, 217, 115-197 (1918) · JFM 46.1203.01
[48] Enskog, D., The Kinetic Theory of Phenomena in Fairly Rare Gases (1917), University of Uppsalan: University of Uppsalan Sweden · JFM 47.0989.01
[49] Karniadakis, G.; Beskok, A.; Gad-el Hak, M., Appl. Mech. Rev., 55, 76 (2002)
[50] Zhang, H.; Zhang, Z.; Zheng, Y.; Ye, H., Phys. Rev. E, 81, 6, 066303 (2010)
[51] Liu, H.-Y.; Dr Ji-Huan He, D.; Bao, F.; Mao, Z.; Qiu, L., Internat. J. Numer. Methods Heat Fluid Flow, 24, 6, 1338-1347 (2014)
[52] Finger, G. W.; Kapat, J. S.; Bhattacharya, A., J. Fluids Eng., 129, 1, 31-39 (2007)
[53] Kalempa, D.; Sharipov, F., Eur. J. Mech. B Fluids, 57, 50-63 (2016) · Zbl 1408.76469
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.