×

A flux globalization based well-balanced path-conservative central-upwind scheme for the shallow water flows in channels. (English) Zbl 1524.76239

Summary: We develop a flux globalization based well-balanced (WB) path-conservative central-upwind (PCCU) scheme for the one-dimensional shallow water flows in channels. Challenges in developing numerical methods for the studied system are mainly related to the presence of nonconservative terms modeling the flow when the channel width and bottom topography are discontinuous. We use the path-conservative technique to treat these nonconservative product terms and implement this technique within the flux globalization framework, for which the friction and aforementioned nonconservative terms are incorporated into the global flux: This results in a quasi-conservative system, which is numerically solved using the Riemann-problem-solver-free central-upwind scheme. The WB property of the resulting scheme (that is, its ability to exactly preserve both still- and moving-water equilibria at the discrete level) is ensured by performing piecewise linear reconstruction for the equilibrium variables rather than the conservative variables, and then evaluating the global flux using the obtained point values of the equilibrium quantities. The robustness and excellent performance of the proposed flux globalization based WB PCCU scheme are demonstrated in several numerical examples with both continuous and discontinuous channel width and bottom topography. In these examples, we clearly demonstrate the advantage of the proposed scheme over its simpler counterparts.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
86-08 Computational methods for problems pertaining to geophysics
35L65 Hyperbolic conservation laws
35L67 Shocks and singularities for hyperbolic equations
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing

References:

[1] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050-2065. · Zbl 1133.65308
[2] J. Balbás and S. Karni, A central scheme for shallow water flows along channels with irregular geometry. M2AN. Math. Model. Numer. Anal. 43 (2009) 333-351. · Zbl 1159.76026
[3] F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Frontiers in Mathematics, Birkhäuser Verlag, Basel (2004). · Zbl 1086.65091
[4] F. Bouchut and T. Morales, A subsonic-well-balanced reconstruction scheme for shallow water flows. SIAM J. Numer. Anal. 48 (2010) 1733-1758. · Zbl 1369.76007
[5] Y. Cao, A. Kurganov, Y. Liu and R. Xin, Flux globalization based well-balanced path-conservative central-upwind schemes for shallow water models. J. Sci. Comput. 92 (2022) 31. · Zbl 1492.76083
[6] M.J. Castro, T. Morales de Luna and C. Parés, Well-balanced schemes and path-conservative numerical methods, in Handbook of Numerical Methods for Hyperbolic Problems. Vol. 18 of Handb. Numer. Anal. Elsevier/North-Holland, Amsterdam (2017) 131-175. · Zbl 1368.65131 · doi:10.1016/bs.hna.2016.10.002
[7] M.J. Castro Daz, A. Kurganov and T. Morales de Luna, Path-conservative central-upwind schemes for nonconservative hyperbolic systems. ESAIM Math. Model. Numer. Anal. 53 (2019) 959-985. · Zbl 1418.76034 · doi:10.1051/m2an/2018077
[8] Y. Cheng and A. Kurganov, Moving-water equilibria preserving central-upwind schemes for the shallow water equations. Commun. Math. Sci. 14 (2016) 1643-1663. · Zbl 1349.76317 · doi:10.4310/CMS.2016.v14.n6.a9
[9] Y. Cheng, A. Chertock, M. Herty, A. Kurganov and T. Wu, A new approach for designing moving-water equilibria preserving schemes for the shallow water equations. J. Sci. Comput. 80 (2019) 538-554. · Zbl 1418.76033
[10] A. Chertock, S. Cui, A. Kurganov and T. Wu, Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms. Int. J. Numer. Meth. Fluids 78 (2015) 355-383. · doi:10.1002/fld.4023
[11] A. Chertock, S. Cui, A. Kurganov, S.N. Özcan and E. Tadmor, Well-balanced schemes for the Euler equations with gravitation: conservative formulation using global fluxes. J. Comput. Phys. 358 (2018) 36-52. · Zbl 1381.76316 · doi:10.1016/j.jcp.2017.12.026
[12] A. Chertock, M. Herty and C.N. Özcan, Well-balanced central-upwind schemes for 2 × 2 systems of balance laws, in Theory, Numerics and Applications of Hyperbolic Problems. I. Vol. 236 of Springer Proc. Math. Stat. Springer, Cham (2018) 345-361. · Zbl 1407.65143
[13] A. Chertock, A. Kurganov, X. Liu, Y. Liu and T. Wu, Well-balancing via flux globalization: applications to shallow water equations with wet/dry fronts. J. Sci. Comput. 90 (2022) 21. · Zbl 1492.76084
[14] G. Dal Maso, P.G. Lefloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483-548. · Zbl 0853.35068
[15] H. Darcy, Recherches expérimentales relatives au mouvement de l’eau dans les tuyaux. Vol. 1. Mallet-Bachelier (1857).
[16] C. Escalante, M.J. Castro and M. Semplice, Very high order well-balanced schemes for non-prismatic one-dimensional channels with arbitrary shape. Appl. Math. Comput. 398 (2021) 16. · Zbl 1508.76017
[17] A. Flamant, Mécanique appliquée: Hydraulique. Baudry éditeur, Paris (France) (1891). · JFM 23.0902.03
[18] J.M. Gallardo, C. Parés and M. Castro, On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys. 227 (2007) 574-601. · Zbl 1126.76036 · doi:10.1016/j.jcp.2007.08.007
[19] P. Gauckler, Etudes Théoriques et Pratiques sur l’Ecoulement et le Mouvement des Eaux. Gauthier-Villars (1867).
[20] N. Gouta and F. Maurel, A finite volume solver for 1d shallow-water equations applied to an actual river. Int. J. Numer. Meth. Fluids 38 (2002) 1-19. · Zbl 1115.76355 · doi:10.1002/fld.201
[21] G. Hernández-Dueñas and S. Karni, Shallow water flows in channels. J. Sci. Comput. 48 (2011) 190-208. · Zbl 1426.76377
[22] S. Jin and X. Wen, Two interface-type numerical methods for computing hyperbolic systems with geometrical source terms having concentrations. SIAM J. Sci. Comput. 26 (2005) 2079-2101. · Zbl 1083.35062
[23] A. Kurganov, Finite-volume schemes for shallow-water equations. Acta Numer. 27 (2018) 289-351. · Zbl 1430.76372
[24] A. Kurganov and C.-T. Lin, On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2 (2007) 141-163. · Zbl 1164.65455
[25] A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5 (2007) 133-160. · Zbl 1226.76008
[26] A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241-282. · Zbl 0987.65085
[27] A. Kurganov, S. Noelle and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23 (2001) 707-740. · Zbl 0998.65091
[28] A. Kurganov, Y. Liu and V. Zeitlin, A well-balanced central-upwind scheme for the thermal rotating shallow water equations. J. Comput. Phys. 411 (2020) 24. · Zbl 1436.65123
[29] A. Kurganov, Y. Liu and R. Xin, Well-balanced path-conservative central-upwind schemes based on flux globalization. J. Comput. Phys. 474 (2023) 32. · Zbl 07640539
[30] P. LeFloch, Graph solutions of nonlinear hyperbolic systems. J. Hyperbolic Differ. Equ. 1 (2004) 643-689. · Zbl 1071.35078 · doi:10.1142/S0219891604000287
[31] P.G. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2002). · Zbl 1019.35001
[32] P.G. LeFloch and M.D. Thanh, A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime. J. Comput. Phys. 230 (2011) 7631-7660. · Zbl 1453.35150 · doi:10.1016/j.jcp.2011.06.017
[33] K.-A. Lie and S. Noelle, On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24 (2003) 1157-1174. · Zbl 1038.65078
[34] X. Liu, A steady-state-preserving scheme for shallow water flows in channels. J. Comput. Phys. 423 (2020) 22. · Zbl 07508418
[35] X. Liu, X. Chen, S. Jin, A. Kurganov and H. Yu, Moving-water equilibria preserving partial relaxation scheme for the Saint-Venant system. SIAM J. Sci. Comput. 42 (2020) A2206-A2229. · Zbl 1446.76133
[36] R. Manning, On the flow of water in open channel and pipes, in Transactions of the Institution of Civil Engineers of Ireland. Vol. 20 (1891) 161-207.
[37] H. Nessyahu and E. Tadmor, Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408-463. · Zbl 0697.65068
[38] C. Parés, Path-conservative numerical methods for nonconservative hyperbolic systems, in Vol. 24 of Quad. Mat. Dept. Math. Seconda Univ. Napoli, Caserta (2009). · Zbl 1266.65148
[39] M. Ricchiuto, An explicit residual based approach for shallow water flows. J. Comput. Phys. 280 (2015) 306-344. · Zbl 1349.76035 · doi:10.1016/j.jcp.2014.09.027
[40] B. Sulistyono, L. Wiryanto and S. Mungkasi, A staggered method for simulating shallow water flows along channels with irregular geometry and friction. Int. J. Adv. Sci. Eng. Inf. Technol. 10 (2020) 952-958. · doi:10.18517/ijaseit.10.3.7413
[41] P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21 (1984) 995-1011. · Zbl 0565.65048
[42] M.E. Vázquez-Cendón, Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 148 (1999) 497-526. · Zbl 0931.76055 · doi:10.1006/jcph.1998.6127
[43] Y. Xing, Numerical methods for the nonlinear shallow water equations, in Handbook of Numerical Methods for Hyperbolic Problems. Vol. 18 of Handb. Numer. Anal. Elsevier/North-Holland, Amsterdam (2017) 361-384. · Zbl 1366.76066 · doi:10.1016/bs.hna.2016.09.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.