×

Spectral properties of fluid structure interaction pressure/stress waves in liquid filled pipes. (English) Zbl 1524.76005


MSC:

76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI

References:

[1] Joukowsky, N., Uber den hydraulischen stoss in wasserleitungsro hren. (on the hydraulic hammer in water supply pipes) mémoires de l’académie imp��riale des sciences de St.-Petersbourg (1904), English translation, partly, by Simin
[2] Korteweg, D., Ueber die fortpflanzungsgeschwindigkeit des schalles in elastischen rohren, on the speed of sound propagation in elastic tubes, Ann. Phys., 241, 12, 525-542 (1878) · JFM 10.0683.01
[3] Skalak, R., An extension of the theory of waterhammer, Trans. ASME, 78, 105-116 (1956)
[4] Holmboe, E. L.; Rouleau, W. T., The effect of viscous shear on transients in liquid lines, J. Basic Eng., 89, 1, 174-180 (1967)
[5] Burmann, W., Water hammer in coaxial pipe systems, J. Hydraul. Eng., 101, 6, 699-715 (1975)
[6] Budny, D. D.; Wiggert, D. C.; Hatfield, F. J., The influence of structural damping on internal pressure during a transient pipe flow, J. Fluids Eng., 113, 3, 424-429 (1991)
[7] Tijsseling, A., Water hammer with fluid-structure interaction in thick-walled pipes, Comput. Struct., 85, 844-851 (2007)
[8] Tijsseling, A. S., Fluid structure interaction in liquid filled pipe systems: a review, J. Fluids Struct., 10, 2, 109-146 (1996)
[9] Li, S.; Karney, B. W.; Liu, G., FSI research in pipeline systems - A review of the literature, J. Fluids Struct., 57, 277-297 (2015)
[10] Ferras, D.; Manso, P. A.; Schleiss, A. J.; Covas, D. I.C., One-dimensional fluid-structure interaction models in pressurized fluid-filled pipes: a review, Appl. Sci., 8, 10, 1844 (2018)
[11] Čanić, S.; Tambača, J.; Guidoboni, G.; Mikelić, A.; Hartley, C. J.; Rosenstrauch, D., Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow, SIAM J. Appl. Math., 67, 1, 164-193 (2006) · Zbl 1121.35091
[12] Plona, T. J.; Sinha, B. K.; Kostek, S.; Chang, S.-K., Axisymmetric wave propagation in fluid-loaded cylindrical shells. II: Theory versus experiment, J. Acoust. Soc. Am., 92, 2, 1144-1155 (1992)
[13] Sinha, B. K.; Plona, T. J.; Kostek, S.; Chang, S.-K., Axisymmetric wave propagation in fluid-loaded cylindrical shells. I: Theory, J. Acoust. Soc. Am., 92, 2, 1132-1143 (1992)
[14] Walker, J. S.; Phillips, J. W., Pulse propagation in fluid-filled tubes, J. Appl. Mech., 44, 1, 31-35 (1977)
[15] Kizilova, N., Pressure wave propagation in liquid-filled tubes of viscoelastic material, Fluid Dyn., 41, 434-446 (2006) · Zbl 1198.76166
[16] Tijsseling, A. S.; Lavooij, C. S.W., Waterhammer with fluid-structure interaction, Appl. Sci. Res., 47, 3, 273-285 (1990) · Zbl 0696.76027
[17] Liu, G.; Li, Y., Vibration analysis of liquid-filled pipelines with elastic constraints, J. Sound Vib., 330, 13, 3166-3181 (2011)
[18] Keramat, A.; Fathi-Moghadam, M.; Zanganeh, R.; Rahmanshahi, M.; Tijsseling, A. S.; Jabbari, E., Experimental investigation of transients-induced fluid-structure interaction in a pipeline with multiple-axial supports, J. Fluids Struct., 93, Article 102848 pp. (2020)
[19] Wang, X.; Lin, J.; Keramat, A.; Ghidaoui, M. S.; Meniconi, S.; Brunone, B., Matched-field processing for leak localization in a viscoelastic pipe: An experimental study, Mech. Syst. Signal Process., 124, 459-478 (2019)
[20] Wang, X.; Palomar, D.; Zhao, L.; Ghidaoui, M.; Murch, R., Spectral-based methods for Pipeline leakage localization, J. Hydraul. Eng. ASCE, 145, 3, Article 04018089 pp. (2019)
[21] Keramat, A.; Karney, B.; Ghidaoui, M. S.; Wang, X., Transient-based leak detection in the frequency domain considering fluid-structure interaction and viscoelasticity, Mech. Syst. Signal Process., 153, Article 107500 pp. (2021)
[22] Keramat, A.; Duan, H. F., Spectral based pipeline leak detection using a single spatial measurement, Mech. Syst. Signal Process., 161, Article 107940 pp. (2021)
[23] Che, T. C.; Duan, H. F.; Lee, P. J., Transient wave-based methods for anomaly detection in fluid pipes: A review, Mech. Syst. Signal Process., 160, Article 107874 pp. (2021)
[24] Duan, H. F.; Lee, P. J., Transient-based frequency domain method for dead-end side branch detection in reservoir pipeline-valve systems, J. Hydraul. Eng, 142, 2, Article 04015042 pp. (2016)
[25] Duan, H. F., Accuracy and sensitivity evaluation of TFR method for leak detection in multiple-pipeline water supply systems, Water Resour. Manage., 32, 2147-2164 (2018)
[26] Lesmez, M. W.; Wiggert, D. C.; Hatfield, F. J., Modal analysis of vibrations in liquid-filled piping systems, J. Fluid Eng., 112, 3, 311-318 (1990)
[27] Tijsseling, A. S., Exact solution of linear hyperbolic four-equation system in axial liquid-pipe vibration, J. Fluids Struct., 18, 2, 179-196 (2003)
[28] Zhang, L.; Tijsseling, A.; Vardy, E., FSI analysis of liquid-filled pipes, J. Sound Vib., 224, 69-99 (1999)
[29] Li, Q.; Yang, K.; Zhang, L.; Zhang, N., Frequency domain analysis of fluid-structure interaction in liquid-filled pipe systems by transfer matrix method, Int. J. Mech. Sci., 44, 2067-2087 (2002) · Zbl 1087.74533
[30] Li, S. J.; Liu, G. M.; Kong, W.t., Vibration analysis of pipes conveying fluid by transfer matrix method, Nucl. Eng. Des., 266, 78-88 (2014)
[31] Mei, C. C.; Jing, H., Pressure and wall shear stress in blood hammer - Analytical theory, Math. Biosci., 280 (2016) · Zbl 1359.92028
[32] Tijsseling, A., Fluid-Structure Interaction in Case of Waterhammer with Cavitation (1993), Delft University of Technology, (Ph.D. thesis)
[33] Chaudhry, M. H., Applied Hydraulic Transients (2014), Springer-Verlag
[34] Li, S.; Karney, B. W.; Liu, G., FSI research in pipeline systems - A review of the literature, J. Fluids Struct., 57, 277-297 (2015)
[35] Lin, T. C.; Morgan, G. W., Wave propagation through fluid contained in a cylindrical, elastic shell, J. Acoust. Soc. Am., 28, 6, 1165-1176 (1956)
[36] Gaultier, F.; Gilbert, J.; Dalmont, J.; Picó, R., Wave propagation in a fluid filled rubber tube: Theoretical and experimental results for Korteweg’s wave, Acta Acust. United Ac., 93, 333-344 (2007)
[37] Ghidaoui, M. S.; Zhao, M.; McInnis, D. A.; Axworthy, D. H., A review of water hammer theory and practice, Appl. Mech. Rev., 58, 1, 49-76 (2005)
[38] Keramat, A.; Tijsseling, A.; Hou, Q.; Ahmadi, A., Fluid-structure interaction with pipe-wall viscoelasticity during water hammer, J. Fluids Struct., 28, 434-455 (2011)
[39] Aliabadi, H. K.; Ahmadi, A.; Keramat, A., Frequency response of water hammer with fluid-structure interaction in a viscoelastic pipe, Mech. Syst. Signal Process., 144, Article 106848 pp. (2020)
[40] Mei, C. C.; Jing, H., Effects of thin plaque on blood hammer—An asymptotic theory, Eur. J. Mech. B Fluids, 69, 62-75 (2018) · Zbl 1408.76610
[41] Bayle, A.; Plouraboué, F., Low Mach number theory of pressure waves inside an elastic tube (2022), submitted for publication
[42] Lewin, M., Eléments de théorie spectrale : le laplacien sur un ouvert borné (2017), CNRS & CEREMADE, Université Paris-Dauphine, PSL Research University, (Master’s thesis)
[43] Kuiken, G. D.C., Amplification of pressure fluctuations due to fluid-structure interaction, J. Fluids Struct., 2, 5, 425-435 (1988)
[44] Yang, K.; Li, Q. S.; Zhang, L., Longitudinal vibration analysis of multi-span liquid-filled pipelines with rigid constraints, J. Sound Vib., 273, 1, 125-147 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.