×

Dynamic coupled thermo-hydro-mechanical problem for heterogeneous deep-sea sediments under vibration of mining vehicle. (English) Zbl 1524.74128

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74H45 Vibrations in dynamical problems in solid mechanics
74F05 Thermal effects in solid mechanics
Full Text: DOI

References:

[1] Hein, J. R.; Koschinsky, A.; Kuhn, T., Deep-ocean polymetallic nodules as a resource for critical materials, Nature Reviews Earth & Environment, 1, 158-169 (2020) · doi:10.1038/s43017-020-0027-0
[2] Ohta, J.; Yasukawa, K.; Nakamura, K.; Fujinaga, K.; Iijima, K.; Kato, Y., Geological features and resource potential of deep-sea mud highly enriched in rare-earth elements in the Central Pacific Basin and the Penrhyn Basin, Ore Geology Reviews, 139, 104440 (2021) · doi:10.1016/j.oregeorev.2021.104440
[3] Watzel, R.; Rühlemann, C.; Vink, A., Mining mineral resources from the seabed: opportunities and challenges, Marine Policy, 114, 103828 (2020) · doi:10.1016/j.marpol.2020.103828
[4] Kang, Y. J.; Liu, S. J., The development history and latest progress of deep-sea polymetallic nodule mining technology, Minerals, 11, 10, 1132 (2021) · doi:10.3390/min11101132
[5] Huang, H.; Wang, L.; Ou, D. Y.; Li, W. W.; Kuang, F. F.; Lin, C.; He, X. B.; An, L. B.; Wang, W. B., A preliminary evaluation of some elements for designation of preservation and impact reference zones in deep-sea in the Clarion-Clipperton Zone: a case study of the China ocean mineral resources association contract area, Ocean & Coastal Management, 188, 15, 105135 (2020)
[6] Haffert, L.; Haeckel, M.; Stigter, H. D.; Janssen, F., Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry, Biogeosciences, 17, 10, 2767-2789 (2020) · doi:10.5194/bg-17-2767-2020
[7] Dai, Y.; Li, X. Y.; Yin, W. W.; Huang, Z. H.; Xie, Y., Dynamics analysis of deep-sea mining pipeline system considering both internal and external flow, Marine Georesources & Geotechnology, 39, 4, 408-418 (2021) · doi:10.1080/1064119X.2019.1708517
[8] Yang, J. M.; Liu, L.; Lyu, H. N.; Lin, Z. Q., Deep-sea mining equipment in China: current status and prospect (in Chinese), Strategic Study of Chinese Academy of Engineering, 22, 6, 1-9 (2020)
[9] Leng, D. X.; Shao, S.; Xie, Y. C.; Wang, H. H.; Liu, G. J., A brief review of recent progress on deep-sea mining vehicle, Ocean Engineering, 228, 15, 108565 (2021) · doi:10.1016/j.oceaneng.2020.108565
[10] Xu, F.; Rao, Q. H.; Ma, W. B., Predicting the sinkage of a moving tracked mining vehicle using a new rheological formulation for soft deep-sea sediment, Journal of Oceanology and Limnology, 36, 2, 230-237 (2018) · doi:10.1007/s00343-018-6344-1
[11] Yu, Y. J.; Duan, L. C.; Wang, H. F.; Duan, X.; Zhu, K. J., Preliminary study on physico-mechanical properties of deep-sea sediments from the Western Pacific (in Chinese), Mining and Metallurgical Engineering, 36, 5, 1-4 (2016)
[12] Lyu, W. Z.; Huang, Y. X.; Zhang, G. Z.; Bao, G. S., Geology of Deposits in the Chinese Pioneering Area of Pacific Polymetallic Nodules (2008), Beijing: Ocean Press, Beijing
[13] Wang, X.; Xue, C.; Li, H., Nonlinear primary resonance analysis for a coupled thermo-piezoelectric-mechanical model of piezoelectric rectangular thin plates, Applied Mathematics and Mechanics (English Edition), 40, 8, 1155-1168 (2019) · Zbl 1422.74070 · doi:10.1007/s10483-019-2510-6
[14] Abouelregal, A. E.; Ahmad, H.; Yahya, A. M H.; Saidi, A.; Alfadil, H., Generalized thermoelastic responses in an infinite solid cylinder under the thermoelastic-diffusion model with four lags, Chinese Journal of Physics, 76, 121-134 (2022) · Zbl 07840808 · doi:10.1016/j.cjph.2021.08.015
[15] Lord, H. W.; Shulman, Y. A., A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, 15, 5, 299-309 (1967) · Zbl 0156.22702 · doi:10.1016/0022-5096(67)90024-5
[16] Green, A. E.; Lindsay, K. A., Thermoelasticity, Journal of Elasticity, 2, 1, 1-7 (1972) · Zbl 0775.73063 · doi:10.1007/BF00045689
[17] Ahmad, H.; Abouelregal, A. E.; Benhamed, M.; Alotaibi, M. F.; Jendoubi, A., Vibration analysis of nanobeams subjected to gradient-type heating due to a static magnetic field under the theory of nonlocal elasticity, Scientific Reports, 12, 1, 1-18 (2022) · doi:10.1038/s41598-022-05934-0
[18] Bai, B., Effects of coupling schemes of thermo hydro-mechanical governing equations for saturated porous medium (in Chinese), Rock and Soil Mechanics, 27, 4, 519-524 (2006)
[19] Yan, R. T.; Zhang, Q., A constitutive model of expansive clay considering thermo-hydro-mechanical coupling effect, Environmental Earth Sciences, 78, 9, 1-12 (2019) · doi:10.1007/s12665-019-8275-3
[20] Guo, Y.; Zhu, H. B.; Xiong, C. B.; Yu, L. N., A two-dimensional generalized thermo-hydro-mechanical-coupled problem for a poroelastic half-space, Waves in Random and Complex Media, 30, 4, 738-758 (2020) · Zbl 1501.74025 · doi:10.1080/17455030.2018.1557758
[21] Guo, Y.; Xiong, C. B., Influence of the viscoelastic relaxation time on a foundation under generalized poro-thermoelasticity, Waves in Random and Complex Media, 2021, 2, 1-31 (2021)
[22] Guo, Y.; Li, W. J.; Ma, J. J.; Liang, B.; Xiong, C. B., Dynamic coupled thermo-hydro-mechanical problem for saturated porous viscoelastic foundation (in Chinese), Chinese Journal of Theoretical and Applied Mechanics, 53, 4, 1081-1092 (2021)
[23] Xiong, C. B.; Guo, Y.; Diao, Y., Normal mode analysis to a poroelastic half-space problem under generalized thermoelasticity, Latin American Journal of Solids and Structures, 14, 5, 930-949 (2017) · doi:10.1590/1679-78253611
[24] Xiong, C. B.; Guo, Y.; Diao, Y., Dynamic problem of saturated soil under the fractional order theory of thermoelasticity, Journal of Porous Media, 23, 4, 311-325 (2020) · doi:10.1615/JPorMedia.2020020592
[25] Qin, B.; Chen, Z. H.; Fang, Z. D.; Sun, S. G.; Fang, X. W.; Wang, J., Analysis of coupled thermo-hydro-mechanical behavior of unsaturated soils based on theory of mixtures I, Applied Mathematics and Mechanics (English Edition), 31, 12, 1561-1576 (2010) · Zbl 1275.74018 · doi:10.1007/s10483-010-1384-6
[26] Bai, B.; Zhou, R.; Cai, G.; Hu, W.; Yang, G. G., Coupled thermo-hydro-mechanical mechanism in view of the soil particle rearrangement of granular thermodynamics, Computers and Geotechnics, 137, 8, 104272 (2021) · doi:10.1016/j.compgeo.2021.104272
[27] Zhu, W.; Shi, X. Y.; Huang, R.; Huang, L. Y.; Ma, W. B., Research on coupled thermo-hydro-mechanical dynamic response characteristics of saturated porous deep-sea sediments under vibration of mining vehicle, Applied Mathematics and Mechanics (English Edition), 42, 9, 1349-1362 (2021) · Zbl 1480.74140 · doi:10.1007/s10483-021-2768-5
[28] Chi, S. B.; Lee, H. B.; Kim, J. U.; Hyeong, K. S.; Ko, Y. T.; Lee, K. Y., Mass physical properties in deep-sea sediment from the clarion-clipperton fracture zone, northeast equatorial pacific, Economic and Environmental Geology, 39, 6, 739-752 (2006)
[29] Ma, W. B.; Li, J. P.; Cai, Q.; Zhu, W.; Yang, C. Q.; Guo, S. C., Influence of surface roughness on the adhesion force between the titanium plate and deep-sea sediment, Marine Georesources & Geotechnology, 39, 12, 1516-1524 (2021) · doi:10.1080/1064119X.2020.1846645
[30] Alharbi, A. M.; Othman, M. I A.; Atef, H. M., Thomson effect with hyperbolic two-temperature on magneto-thermo-visco-elasticity, Applied Mathematics and Mechanics (English Edition), 42, 9, 1311-1326 (2021) · Zbl 1479.74031 · doi:10.1007/s10483-021-2763-7
[31] Zhou, Q. J.; Li, X. S.; Huang, B. G.; Liu, L. J.; Gao, S.; Zhou, H.; Liu, J.; Liu, B. H.; Zhang, C. Y., Inversion of the physical properties of seafloor surface sediments based on AUV sub-bottom profile data in the northern slope of the south china sea, Scientific Reports, 11, 1, 1-11 (2021)
[32] Zhu, C. Q.; Zhou, L.; Zhang, H.; Jiao, X. R.; Jiang, J.; Sheng, H. G.; Jia, Y. G., Preliminary study of physical and mechanical properties of surface sediment in Northern South China Sea (in Chinese), Journal of Engineering Geology, 25, 6, 1566-1573 (2017)
[33] Mihai, L. A.; Goriely, A., How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity, Royal Society, 473, 2207, 1-32 (2017) · Zbl 1404.74018
[34] Ning, L.; Kaya, M., Power law for elastic moduli of unsaturated soil, Journal of Geotechnical and Geoenvironmental Engineering, 140, 1, 46-56 (2014) · doi:10.1061/(ASCE)GT.1943-5606.0000990
[35] Liu, X. L.; Zhang, X. M.; Wang, H.; Jiang, B. Y., Laboratory testing and analysis of dynamic and static resilient modulus of subgrade soil under various influencing factors, Construction and Building Materials, 195, 20, 178-186 (2019) · doi:10.1016/j.conbuildmat.2018.11.061
[36] Xiong, C. B.; Hu, Q. Q.; Guo, Y., Dynamic response of saturated porous elastic foundation under porosity anisotropy (in Chinese), Chinese Journal of Theoretical and Applied Mechanics, 52, 4, 1120-1130 (2020)
[37] You, L. Y.; Yan, K. Z.; Hu, Y. B.; Zollinger, D. G., Spectral element solution for transversely isotropic elastic multi-layered structures subjected to axisymmetric loading, Computers and Geotechnics, 72, 67-73 (2016) · doi:10.1016/j.compgeo.2015.11.004
[38] You, L. Y.; Yan, K. Z.; Man, J.; Shi, T., 3D spectral element solution of multilayered half-space medium with harmonic moving load: effect of layer, interlayer, and loading properties on dynamic response of medium, International Journal of Geomechanics, 20, 12, 04020227 (2020) · doi:10.1061/(ASCE)GM.1943-5622.0001878
[39] Man, J.; Yan, K. Z.; Miao, Y.; Liu, Y.; Yang, X.; Diab, A.; You, L. Y., 3D spectral element model with a space-decoupling technique for the response of transversely isotropic pavements to moving vehicular loading, Road Materials and Pavement Design, 23, 11, 2567-2591 (2022) · doi:10.1080/14680629.2021.1986121
[40] Guo, Z. G.; Bai, B., Effect of saturation on thermo-hydro-mechanical coupled responses in porous media (in Chinese), Chinese Journal of Geotechnical Engineering, 40, 6, 1021-1028 (2018)
[41] Zhu, W.; Pan, J. X.; Ma, W. B.; Deng, S.; Zhou, W. J.; Liu, W. Y.; Long, S. G.; Yang, C. Q.; You, L. Y., Dynamic response of the heterogeneous deep-sea sediment with nonlinear gradient modulus to mining machine loading, Marine Georesources & Geotechnology, 40, 3, 255-266 (2022) · doi:10.1080/1064119X.2021.1883164
[42] Zhu, W.; Pan, J. X.; You, L. Y.; Ma, W. B., Dynamic response analysis of deep-sea sediments with heterogeneity under moving non-uniform mining collector loading, Journal of Engineering Mechanics, 148, 3, 04021159 (2022) · doi:10.1061/(ASCE)EM.1943-7889.0002075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.