×

NESTANets: stable, accurate and efficient neural networks for analysis-sparse inverse problems. (English) Zbl 1524.68324

Summary: Solving inverse problems is a fundamental component of science, engineering and mathematics. With the advent of deep learning, deep neural networks have significant potential to outperform existing state-of-the-art, model-based methods for solving inverse problems. However, it is known that current data-driven approaches face several key issues, notably hallucinations, instabilities and unpredictable generalization, with potential impact in critical tasks such as medical imaging. This raises the key question of whether or not one can construct deep neural networks for inverse problems with explicit stability and accuracy guarantees. In this work, we present a novel construction of accurate, stable and efficient neural networks for inverse problems with general analysis-sparse models, termed NESTANets. To construct the network, we first unroll NESTA, an accelerated first-order method for convex optimization. The slow convergence of this method leads to deep networks with low efficiency. Therefore, to obtain shallow, and consequently more efficient, networks we combine NESTA with a novel restart scheme. We then use compressed sensing techniques to demonstrate accuracy and stability. We showcase this approach in the case of Fourier imaging, and verify its stability and performance via a series of numerical experiments. The key impact of this work is demonstrating the construction of efficient neural networks based on unrolling with guaranteed stability and accuracy.

MSC:

68T07 Artificial neural networks and deep learning
15A29 Inverse problems in linear algebra
65K10 Numerical optimization and variational techniques
90C25 Convex programming

References:

[1] Adcock, B.; Hansen, AC, Compressive Imaging: Structure, Sampling, Learning (2021), Cambridge: Cambridge University Press, Cambridge · Zbl 1468.68001 · doi:10.1017/9781108377447
[2] Arridge, S.; Maass, P.; Öktem, O.; Schönlieb, C-B, Solving inverse problems using data-driven models, Acta Numer., 28, 1-174 (2019) · Zbl 1429.65116 · doi:10.1017/S0962492919000059
[3] Ravishankar, S.; Ye, JC; Fessler, JA, Image reconstruction: from sparsity to data-adaptive methods and machine learning, Proc. IEEE, 108, 1, 86-109 (2020) · doi:10.1109/JPROC.2019.2936204
[4] FDA: 510k Premarket Notification of HyperSense (GE Medical Systems). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K162722
[5] FDA: 510k Premarket Notification of MAGNETOM Aera And MAGNETOM Skyra With Syngo MR E11C - AP02 Software (Siemens Medical Solutions USA). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K163312
[6] Wang, G.; Ye, JC; Mueller, K.; Fessler, JA, Image reconstruction is a new frontier of machine learning, IEEE Trans. Med. Imag., 37, 6, 1289-1296 (2018) · doi:10.1109/TMI.2018.2833635
[7] Knoll, F.; Hammernik, K.; Zhang, C.; Moeller, S.; Pock, T.; Sodickson, DK; Akçakaya, M., Deep-learning methods for parallel Magnetic Resonance Imaging reconstruction: a survey of the current approaches, trends, and issues, IEEE Signal Process. Mag., 37, 1, 128-140 (2020) · doi:10.1109/MSP.2019.2950640
[8] Liang, D.; Cheng, J.; Ke, Z.; Ying, L., Deep Magnetic Resonance image reconstruction: inverse problems meet neural networks, IEEE Signal Process. Mag., 37, 1, 141-151 (2020) · doi:10.1109/MSP.2019.2950557
[9] Lundervold, A.; Lundervold, A., An overview of deep learning in medical imaging focusing on MRI, Z. Med. Phys., 29, 2, 102-127 (2019) · doi:10.1016/j.zemedi.2018.11.002
[10] McCann, MT; Jin, KH; Unser, M., Convolutional neural networks for inverse problems in imaging: a review, IEEE Signal Process. Mag., 34, 6, 85-95 (2017) · doi:10.1109/MSP.2017.2739299
[11] Ongie, G.; Jalal, A.; Metzler, CA; Baraniuk, RG; Dimakis, AG; Willett, R., Deep learning techniques for inverse problems in imaging, IEEE J. Sel. Areas Inf. Theory, 1, 1, 39-56 (2020) · doi:10.1109/JSAIT.2020.2991563
[12] Shen, C.; Nguyen, D.; Zhou, Z.; Jiang, SB; Dong, B.; Jia, X., An introduction to deep learning in medical physics: advantages, potential, and challenges, Phys. Med. Biol., 65, 5, 05-01 (2020) · doi:10.1088/1361-6560/ab6f51
[13] Zhang, H.; Dong, B., A review on deep learning in medical image reconstruction, J. Oper. Res. Soc. China, 8, 311-340 (2020) · Zbl 1474.92058 · doi:10.1007/s40305-019-00287-4
[14] Gottschling, N.M., Antun, V., Adcock, B., Hansen, A.C.: The Troublesome Kernel: Why Deep Learning for Inverse Problems is Typically Unstable. arXiv:2001.01258 (2020)
[15] Antun, V.; Renna, F.; Poon, C.; Adcock, B.; Hansen, AC, On instabilities of deep learning in image reconstruction and the potential costs of AI, Proc. Natl. Acad. Sci. USA, 117, 48, 30088-30095 (2020) · doi:10.1073/pnas.1907377117
[16] Huang, Y., Würfl, T., Breininger, K., Liu, L., Lauritsch, G., Maier, A.: Some investigations on robustness of deep learning in limited angle tomography. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 145-153 (2018)
[17] Muckley, MJ; Riemenschneider, B.; Radmanesh, A.; Kim, S.; Jeong, G.; Ko, J.; Jun, Y.; Shin, H.; Hwang, D.; Mostapha, M., Results of the 2020 fastMRI challenge for machine learning MR image reconstruction, IEEE Trans. Med. Imag., 40, 9, 2306-2317 (2021) · doi:10.1109/TMI.2021.3075856
[18] Hoffman, DP; Slavitt, I.; Fitzpatrick, CA, The promise and peril of deep learning in microscopy, Nat. Methods, 18, 2, 131-132 (2021) · doi:10.1038/s41592-020-01035-w
[19] Belthangady, C., Royer, L.A.: Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat. Methods 16(12), 1215-1225 (2019)
[20] Herskovits, EH, Artificial intelligence in molecular imaging, Ann. Transl. Med., 9, 9, 824 (2021) · doi:10.21037/atm-20-6191
[21] Sayantan, B.; Kelkar, VA; Brooks, FJ; Anastasio, MA, On hallucinations in tomographic image reconstruction, IEEE Trans. Med. Imag., 40, 11, 3249-3260 (2021) · doi:10.1109/TMI.2021.3077857
[22] Sidky, EY; Lorente, I.; Brankov, JG; Pan, X., Do CNNs solve the CT inverse problem?, IEEE Trans. Biomed. Eng., 68, 6, 1799-1810 (2021) · doi:10.1109/TBME.2020.3020741
[23] Boche, H., Fono, A., Kutyniok, G.: Limitations of deep learning for inverse problems on digital hardware. arXiv:2202.13490 (2022)
[24] Hardy, NP; Mac Aonghusa, P.; Neary, PM; Cahill, RA, Intraprocedural artificial intelligence for colorectal cancer detection and characterisation in endoscopy and laparoscopy, Surgical Innov., 28, 6, 768-775 (2021) · doi:10.1177/1553350621997761
[25] Laine, RF; Arganda-Carreras, I.; Henriques, R.; Jacquemet, G., Avoiding a replication crisis in deep-learning-based bioimage analysis, Nat. Methods, 18, 10, 1136-1144 (2021) · doi:10.1038/s41592-021-01284-3
[26] Larson, DB; Harvey, H.; Rubin, DL; Irani, N.; Justin, RT; Langlotz, CP, Regulatory frameworks for development and evaluation of artificial intelligence-based diagnostic imaging algorithms: summary and recommendations, J. Am. Coll. Radiol., 18, 3, 413-424 (2021) · doi:10.1016/j.jacr.2020.09.060
[27] Liu, X., Glocker, B., McCradden, M.M., Ghassemi, M., Denniston, A.K., Oakden-Rayner, L.: The medical algorithmic audit. Lancet Digital Health (2022)
[28] Morshuis, J.N., Gatidis, S., Hein, M., Baumgartner, C.F.: Adversarial robustness of MR image reconstruction under realistic perturbations. arXiv:2208.03161 (2022)
[29] Pal, A., Rathi, Y.: A review and experimental evaluation of deep learning methods for MRI reconstruction. Mach. Learn. Biomed. Imaging 1-10 (2022)
[30] Qi, H.; Cruz, G.; Botnar, R.; Prieto, C., Synergistic multi-contrast cardiac magnetic resonance image reconstruction, Philos. Trans. R. Soc. A, 379, 2200, 20200197 (2021) · doi:10.1098/rsta.2020.0197
[31] Singh, R.; Wu, W.; Wang, G.; Kalra, MK, Artificial intelligence in image reconstruction: the change is here, Phys. Medica, 79, 113-125 (2020) · doi:10.1016/j.ejmp.2020.11.012
[32] Torres-Velázquez, M.; Chen, W-J; Li, X.; McMillan, AB, Application and construction of deep learning networks in medical imaging, IEEE Trans. Radi. Plasma Med. Sci., 5, 2, 137-159 (2020) · doi:10.1109/TRPMS.2020.3030611
[33] Varoquaux, G.; Cheplygina, V., Machine learning for medical imaging: methodological failures and recommendations for the future, NPJ Digital Med., 5, 1, 1-8 (2022) · doi:10.1038/s41746-022-00592-y
[34] Yu, T., Hilbert, T., Piredda, G.F., Joseph, A., Bonanno, G., Zenkhri, S., Omoumi, P., Cuadra, M.B., Canales-Rodríguez, E.J., Kober, T., et al.: Validation and generalizability of self-supervised image reconstruction methods for undersampled MRI. arXiv:2201.12535 (2022)
[35] Wu, E.; Wu, K.; Daneshjou, R.; Ouyang, D.; Ho, DE; Zou, J., How medical AI devices are evaluated: limitations and recommendations from an analysis of FDA approvals, Nat. Med., 27, 4, 582-584 (2021) · doi:10.1038/s41591-021-01312-x
[36] Noordman, C.R.: Current issues in deep learning for undersampled image reconstruction. Preprint (2021)
[37] Stumpo, V.; Kernbach, JM; van Niftrik, CHB; Sebök, M.; Fierstra, J.; Regli, L.; Serra, C.; Staartjes, VE; Staartjes, VE; Regli, L.; Serra, C., Machine learning algorithms in neuroimaging: an overview, Machine Learning in Clinical Neuroscience. Acta Neurochirurgica Supplement, 125-138 (2022), Cham: Springer, Cham · doi:10.1007/978-3-030-85292-4_17
[38] Tölle, M., Laves, M.-H., Schlaefer, A.: A mean-field variational inference approach to deep image prior for inverse problems in medical imaging. In: Heinrich, M., Dou, Q., de Bruijne, M., Lellmann, J., Schläfer, A., Ernst, F. (eds.) Proceedings of the Fourth Conference on Medical Imaging with Deep Learning. Proceedings of Machine Learning Research, vol. 143, pp. 745-760. PMLR, Lübeck, Germany (2021)
[39] Lahiri, A.: Learning-based algorithms for inverse problems in MR image reconstruction and quantitative perfusion imaging. PhD thesis, The University of Michigan (2021)
[40] Shimron, E.; Tamir, JI; Wang, K.; Lustig, M., Implicit data crimes: machine learning bias arising from misuse of public data, Proc. Natl Acad. Sci. USA, 119, 13, 2117203119 (2022) · doi:10.1073/pnas.2117203119
[41] Genzel, M., Macdonald, J., Marz, M.: Solving inverse problems with deep neural networks—robustness included? IEEE Trans. Pattern Anal. Machine Intell. 45(1), 1119-1134.(2022)
[42] Zhang, C., Jia, J., Yaman, B., Moeller, S., Liu, S., Hong, M., Akçakaya, M.: Instabilities in conventional multi-coil MRI reconstruction with small adversarial perturbations. In: 2021 55th Asilomar Conference on Signals, Systems, and Computers, pp. 895-899 (2021)
[43] Darestani, M.Z., Chaudhari, A.S., Heckel, R.: Measuring robustness in deep learning based compressive sensing. In: International Conference on Machine Learning, pp. 2433-2444 (2021)
[44] Alaifari, R., Alberti, G.S., Gauksson, T.: Localized adversarial artifacts for compressed sensing MRI. arXiv:2206.05289 (2022)
[45] Colbrook, MJ; Antun, V.; Hansen, AC, The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and smale’s 18th problem, Proc. Natl. Acad. Sci. USA, 119, 12, 2107151119 (2022) · doi:10.1073/pnas.2107151119
[46] Hasannasab, M., Hertrich, J., Neumayer, S., Plonka, G., Setzer, S., Steidl, G.: Parseval proximal neural networks. J. Fourier Anal. Appl. 26(4) , 1-31(2020) · Zbl 1489.68224
[47] Combettes, PL; Pesquet, J-C, Lipschitz certificates for layered network structures driven by averaged activation operators, SIAM J. Math. Data Sci., 2, 2, 529-557 (2020) · Zbl 07468921 · doi:10.1137/19M1272780
[48] Adcock, B.; Hansen, AC; Roman, B., A note on compressed sensing of structured sparse wavelet coefficients from subsampled Fourier measurements, IEEE Signal Process. Lett., 23, 5, 732-736 (2016) · doi:10.1109/LSP.2016.2550101
[49] Chambolle, A.; Pock, T., A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40, 1, 120-145 (2011) · Zbl 1255.68217 · doi:10.1007/s10851-010-0251-1
[50] Chambolle, A.; Pock, T., On the ergodic convergence rates of a first-order primal-dual algorithm, Math. Program., 159, 1-2, 253-287 (2016) · Zbl 1350.49035 · doi:10.1007/s10107-015-0957-3
[51] Roulet, V.; d’Aspremont, A., Sharpness, restart, and acceleration, SIAM J. Optim., 30, 1, 262-289 (2020) · Zbl 1435.90109 · doi:10.1137/18M1224568
[52] Renegar, J.; Grimmer, B., A simple nearly optimal restart scheme for speeding up first-order methods, Found. Comput. Math., 22, 1, 211-256 (2022) · Zbl 1516.90054 · doi:10.1007/s10208-021-09502-2
[53] Colbrook, MJ, WARPd: a linearly convergent first-order primal-dual algorithm for inverse problems with approximate sharpness conditions, SIAM J. Imaging Sci., 15, 3, 1539-1575 (2022) · Zbl 1496.65074 · doi:10.1137/21M1455000
[54] Fessler, JA, Optimization methods for magnetic resonance image reconstruction: key models and optimization algorithms, IEEE Signal Process. Mag., 37, 1, 33-40 (2020) · doi:10.1109/MSP.2019.2943645
[55] Lustig, M.; Donoho, DL; Santos, JM; Pauly, JM, Compressed sensing MRI, IEEE Signal Process. Mag., 25, 2, 72-82 (2008) · doi:10.1109/MSP.2007.914728
[56] Lustig, M.; Donoho, DL; Pauly, JM, Sparse MRI: the application of compressed sensing for rapid MRI imaging, Magn. Reson. Med., 58, 6, 1182-1195 (2007) · doi:10.1002/mrm.21391
[57] Candès, EJ; Donoho, DL; Rabut, C.; Cohen, A.; Schumaker, LL, Curvelets-a surprisingly effective nonadaptive representation for objects with edges, Curves and Surfaces, 105-120 (2000), Nashville: Vanderbilt University Press, Nashville
[58] Candès, EJ; Donoho, DL, Recovering edges in ill-posed inverse problems: optimality of curvelet frames, Ann. Statist., 30, 3, 784-842 (2002) · Zbl 1101.62335 · doi:10.1214/aos/1028674842
[59] Candès, EJ; Donoho, DL, New tight frames of curvelets and optimal representations of objects with piecewise \({C}^2\) singularities, Commun. Pure Appl. Math., 57, 2, 219-266 (2004) · Zbl 1038.94502 · doi:10.1002/cpa.10116
[60] Candès, EJ; Donoho, DL, Ridgelets: a key to high dimensional intermittency?, Philos. Trans. R. Soc. A, 357, 1760, 2495-2509 (1999) · Zbl 1082.42503 · doi:10.1098/rsta.1999.0444
[61] Labate, D.; Lim, W-Q; Kutyniok, G.; Weiss, G.; Papadakis, M.; Laine, AF; Unser, MA, Sparse multidimensional representation using shearlets, Wavelets XI, 254-262 (2005), Bellingham: SPIE, Bellingham · doi:10.1117/12.613494
[62] Guo, K.; Kutyniok, G.; Labate, D.; Chen, G.; Lai, M-J, Sparse multidimensional representations using anisotropic dilation and shear operators, Wavelets and Splines: Athens 2005, 189-201 (2006), Brentwood: Nashboro Press, Brentwood · Zbl 1099.65148
[63] Guo, K.; Labate, D., Optimally sparse multidimensional representation using shearlets, SIAM J. Math. Anal., 39, 1, 298-318 (2007) · Zbl 1197.42017 · doi:10.1137/060649781
[64] Kutyniok, G.; Lim, W-Q, Compactly supported shearlets are optimally sparse, J. Approx. Theory, 163, 11, 1564-1589 (2011) · Zbl 1226.42031 · doi:10.1016/j.jat.2011.06.005
[65] Becker, S.; Bobin, J.; Candès, EJ, NESTA: a fast and accurate first-order method for sparse recovery, SIAM J. Imaging Sci., 4, 1, 1-39 (2011) · Zbl 1209.90265 · doi:10.1137/090756855
[66] Becker, S.R.: Practical Compressed Sensing: Modern Data Acquisition and Signal Processing. PhD thesis, Stanford University (2011)
[67] Roulet, V.; Boumal, AN, d’Aspremont: computational complexity versus statistical performance on sparse recovery problems, Inf. Inference, 9, 1, 1-32 (2020) · Zbl 1470.94056 · doi:10.1093/imaiai/iay020
[68] Monga, V.; Li, Y.; Eldar, YC, Algorithm unrolling: interpretable, efficient deep learning for signal and image processing, IEEE Signal Process. Mag., 38, 2, 18-44 (2021) · doi:10.1109/MSP.2020.3016905
[69] Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: International Conference on Machine Learning, pp. 399-406 (2010)
[70] Zhang, J., Ghanem, B.: ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1828-1837 (2018)
[71] Yang, Y., Sun, J., Li, H., Xu, Z.: Deep ADMM-Net for compressive sensing MRI. In: Advances in Neural Information Processing Systems, pp. 10-18 (2016)
[72] Yang, Y.; Sun, J.; Li, H.; Xu, Z., ADMM-CSNet: a deep learning approach for image compressive sensing, IEEE Trans. Pattern Anal. Machine Intell., 42, 3, 521-538 (2020) · doi:10.1109/TPAMI.2018.2883941
[73] Arvinte, M., Vishwanath, S., Tewfik, A.H., Tamir, J.I.: Deep J-Sense: Accelerated MRI Reconstruction Via Unrolled Alternating Optimization. arXiv:2103.02087 (2021)
[74] Adler, J.; Öktem, O., Learned primal-dual reconstruction, IEEE Trans. Med. Imag., 37, 6, 1322-1332 (2018) · doi:10.1109/TMI.2018.2799231
[75] Wang, S., Fidler, S., Urtasun, R.: Proximal deep structured models. In: Advances in Neural Information Processing Systems, pp. 865-873 (2016)
[76] Chun, I.-Y., Fessler, J.A.: Deep BCD-net using identical encoding-decoding CNN structures for iterative image recovery. In: 2018 IEEE 13th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), pp. 1-5 (2018)
[77] Cui, Z.-X., Cheng, J., Zhu, Q., Liu, Y., Jia, S., Zhao, K., Ke, Z., Huang, W., Wang, H., Zhu, Y., Liang, D.: Equilibrated zeroth-order unrolled deep networks for accelerated MRI. arXiv:2112.09891 (2021)
[78] Metzler, C.A., Mousavi, A., Baraniuk, R.G.: Learned D-AMP: principled neural network based compressive image recovery. In: Advances in Neural Information Processing Systems, pp. 1770-1781 (2017)
[79] Gilton, D.; Ongie, G.; Willett, R., Neumann networks for linear inverse problems in imaging, IEEE Trans. Comput. Imag., 6, 328-343 (2020) · doi:10.1109/TCI.2019.2948732
[80] Hammernik, K.; Klatzer, T.; Kobler, E.; Recht, MP; Sodickson, DK; Pock, T.; Knoll, F., Learning a variational network for reconstruction of accelerated MRI data, Magn. Reson. Med., 79, 6, 3055-3071 (2018) · doi:10.1002/mrm.26977
[81] Gilton, D.; Ongie, G.; Willett, R., Deep equilibrium architectures for inverse problems in imaging, IEEE Trans. Comput. Imag., 7, 1123-1133 (2021) · doi:10.1109/TCI.2021.3118944
[82] Foucart, S., Stability and robustness of \(\ell_1\)-minimizations with Weibull matrices and redundant dictionaries, Linear Algebra Appl., 441, 4-21 (2014) · Zbl 1332.94042 · doi:10.1016/j.laa.2012.10.003
[83] Nesterov, Y., A method for solving the convex programming problem with convergence rate \(\cal{O}(1/k^2)\), Soviet Math. Dokl., 27, 372-376 (1983) · Zbl 0535.90071
[84] Nesterov, Y., Smooth minimization of non-smooth functions, Math. Program. Ser. A, 103, 127-152 (2005) · Zbl 1079.90102 · doi:10.1007/s10107-004-0552-5
[85] Adcock, B., Brugiapaglia, S., Webster, C.G.: Sparse Polynomial Approximation of High-Dimensional Functions. Comput. Sci. Eng. (2022) (Society for Industrial and Applied Mathematics, Philadelphia, PA) · Zbl 07515822
[86] Adcock, B.; Dexter, N.; Xu, Q., Improved recovery guarantees and sampling strategies for TV minimization in compressive imaging, SIAM J. Imaging Sci., 14, 3, 1149-1183 (2021) · Zbl 1479.94008 · doi:10.1137/20M136788X
[87] Krahmer, F.; Ward, R., Stable and robust sampling strategies for compressive imaging, IEEE Trans. Image Process., 23, 2, 612-622 (2013) · Zbl 1374.94181 · doi:10.1109/TIP.2013.2288004
[88] Poon, C., On the role of total variation in compressed sensing, SIAM J. Imaging Sci., 8, 1, 682-720 (2015) · Zbl 1381.94038 · doi:10.1137/140978569
[89] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024-8035 (2019)
[90] Guerquin-Kern, M.; Lejeune, L.; Pruessmann, KP; Unser, M., Realistic analytical phantoms for parallel Magnetic Resonance Imaging, IEEE Trans. Med. Imag., 31, 3, 626-636 (2012) · doi:10.1109/TMI.2011.2174158
[91] Brugiapaglia, S.; Adcock, B., Robustness to unknown error in sparse regularization, IEEE Trans. Inf. Theory, 64, 10, 6638-6661 (2018) · Zbl 1401.94027 · doi:10.1109/TIT.2017.2788445
[92] Kutyniok, G.; Lim, W-Q, Optimal compressive imaging of Fourier data, SIAM J. Imaging Sci., 11, 1, 507-546 (2018) · Zbl 1437.94043 · doi:10.1137/16M1098541
[93] Nam, S.; Davies, ME; Elad, M.; Gribonval, R., The cosparse analysis model and algorithms, Appl. Comput. Harmon. Anal., 34, 1, 30-56 (2013) · Zbl 1261.94018 · doi:10.1016/j.acha.2012.03.006
[94] Genzel, M.; Kutyniok, G.; März, M., \( \ell^1\)-analysis minimization and generalized (co-)sparsity: when does recovery succeed?, Appl. Comput. Harmon. Anal., 52, 82-140 (2021) · Zbl 1460.94021 · doi:10.1016/j.acha.2020.01.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.