×

Modified Legendre rational and exponential collocation methods for solving nonlinear Hammerstein integral equations on the semi-infinite domain. (English) Zbl 1524.65980

Summary: This paper discusses two efficient collocation methods for solving the Hammerstein integral equations on the semi-infinite domain, where the underlying solutions decay to zero at infinity. These methods are based upon modified Legendre rational and exponential functions, and reduce the Hammerstein integral equation to a nonlinear algebraic system. The error between the approximate and exact solutions in the usual \(L^2\)-norm is estimated. Finally, some numerical experiments are presented to examine and demonstrate the effectiveness and accuracy of the proposed methods in comparison to other approaches.

MSC:

65R20 Numerical methods for integral equations
45G10 Other nonlinear integral equations
Full Text: DOI

References:

[1] Anselone, P. M.; Lee, J. W., Nonlinear integral equations on the half line, J. Integral Equ. Appl., 4, 1, 1-14 (1992) · Zbl 0766.45001
[2] Anselone, P. M.; Sloan, I. H., Integral equations on the half line, J. Integral Equ. Appl., 9, 1, 3-23 (1985) · Zbl 0575.65137
[3] Anselone, P. M.; Sloan, I. H., Numerical solutions of integral equations on the half line, Numer. Math., 51, 599-614 (1987) · Zbl 0613.65137
[4] Aref’eva, I. Y.; Volovich, I. V., Cosmological daemon, J. High Energy Phys., 2011, 8, 1-29 (2011) · Zbl 1298.81234
[5] Assari, P.; Asadi-Mehregan, F.; Dehghan, M., On the numerical solution of Fredholm integral equations utilizing the local radial basis function method, Int. J. Comput. Math., 96, 7, 1416-1443 (2019) · Zbl 1499.65739
[6] Atkinson, K., The numerical solution of integral equations on the half-line, SIAM. J. Numer. Anal., 6, 3, 375-397 (1969) · Zbl 0184.20105
[7] Atkinson, K. E., The Numerical Solution of Integral Equations of the Second Kind (1997), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0899.65077
[8] Aziz, I., New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, J. Comput. Appl. Math., 239, 333-345 (2013) · Zbl 1255.65235
[9] Aziz, I.; Khan, F., A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations, J. Comput. Appl. Math., 272, 70-80 (2014) · Zbl 1310.65162
[10] Barrera, D.; Mokhtari, F. E.; Ibáñez, M. J.; Sbibih, D., Non-uniform quasi-interpolation for solving Hammerstein integral equations, Int. J. Comput. Math., 97, 1-2, 72-84 (2020) · Zbl 07475960
[11] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2011), Springer-Verlag: Springer-Verlag, New York · Zbl 1220.46002
[12] Canuto, C.; Hussaini, M. Y.; Zang, T. A.; Quarteroni, A., Spectral Methods (2006), Springer-Verlag: Springer-Verlag, Berlin, Heidelberg · Zbl 1093.76002
[13] Chandrasekhar, S., Radiative Transfer (1960), Dover Publications, Inc: Dover Publications, Inc, New York
[14] Corduneanu, C., Integral Equations and Stability of Feedback Systems (1973), Academic Press: Academic Press, New York · Zbl 0268.34070
[15] de Hoog, F.; Sloan, I. H., The finite-section approximation for integral equations on the half-line, J. Aust. Math. Soc. Ser. B Appl. Math., 28, 4, 415-434 (1987) · Zbl 0645.65093
[16] El-Sayed, W. G., Nonlinear functional integral equations of convolution type, Port. Math., 54, 449-456 (1997) · Zbl 0896.45004
[17] Engibaryan, N. B., On one problem of nonlinear radiation transfer, Astrofizika, 2, 1, 31-36 (1966)
[18] Ganesh, M.; Joshi, M. C., Numerical solutions of nonlinear integral equations on the half line, Numer. Funct. Anal. Optim., 10, 11-12, 1115-1138 (1989) · Zbl 0799.65148
[19] Hamani, F.; Rahmoune, A., Solving nonlinear Volterra-Fredholm integral equations using an accurate spectral collocation method, Tatra Mt. Math. Publ., 80, 3, 35-52 (2021) · Zbl 1491.65169
[20] Hochstadt, H., Integral Equations (1973), John Wiley: John Wiley, New York · Zbl 0137.08601
[21] Khachatryan, A. K.; Khachatryan, K. A., Qualitative difference between solutions of stationary model Boltzmann equations in the linear and nonlinear cases, Theor. Math. Phys., 172, 1315-1320 (2012) · Zbl 1282.82028
[22] Khosravi, H.; Allahyari, R.; Haghighi, A. S., Existence of solutions of functional integral equations of convolution type using a new construction of a measure of noncompactness on \(####\), Appl. Math. Comput., 260, 140-147 (2015) · Zbl 1410.47019
[23] Kress, R., Linear Integral Equations (1989), Springer-Verlag: Springer-Verlag, Berlin, Heidelberg · Zbl 0671.45001
[24] Long, N. M.A. N.; Eshkuratov, Z. K.; Yaghobifar, M.; Hasan, M., Numerical solution of infinite boundary integral equation by using Galerkin method with Laguerre polynomials, World Acad. Sci. Eng. Technol. Int. J. Math. Comput. Phys. Electr. Comput. Eng., 2, 800-803 (2008)
[25] Madbouly, N.; McGhee, D.; Roach, G., Adomian’s method for Hammerstein integral equations arising from chemical reactor theory, Appl. Math. Comput., 117, 2, 241-249 (2001) · Zbl 1023.65143
[26] Maleknejad, K.; Hoseingholipour, A., Numerical treatment of singular integral equation in unbounded domain, Int. J. Comput. Math., 98, 8, 1633-1647 (2021) · Zbl 1483.65219
[27] Mousavi, B. K.; Hemmat, A. A.; Abdollahi, F., Wilson wavelets-based approximation method for solving nonlinear Fredholm-Hammerstein integral equations, Int. J. Comput. Math., 96, 1, 73-84 (2019) · Zbl 1499.42157
[28] Nahid, N.; Das, P.; Nelakanti, G., Projection and multiprojection methods for nonlinear integral equations on the half-line, J. Comput. Appl. Math., 359, 119-144 (2019) · Zbl 1425.65212
[29] Nahid, N.; Nelakanti, G. N., Discrete projection methods for Hammerstein integral equations on the half-line, Calcolo, 57, 4, 1-42 (2020) · Zbl 1488.65752
[30] Nahid, N.; Nelakanti, G., Convergence analysis of Galerkin and multi-Galerkin methods for linear integral equations on half-line using Laguerre polynomials, Comput. Appl. Math., 38, 182, 1 (2019) · Zbl 1438.65338
[31] Nahid, N.; Nelakanti, G., Convergence analysis of Galerkin and multi-Galerkin methods for nonlinear-Hammerstein integral equations on the half-line using Laguerre polynomials, Int. J. Comput. Math., 4, 1, 1-29 (2021)
[32] Rahmoune, A., Spectral collocation method for solving Fredholm integral equations on the half-line, Appl. Math. Comput., 219, 17, 9254-9260 (2013) · Zbl 1288.65190
[33] Rahmoune, A., On the numerical solution of integral equations of the second kind over infinite intervals, J. Appl. Math. Comput., 66, 129-148 (2021) · Zbl 07435207
[34] Shen, J.; Wang, L., Some recent advances on spectral methods for unbounded domains, Commun. Comput. Phys., 5, 2-4, 195-241 (2009) · Zbl 1364.65265
[35] Sloan, I. H.; Spence, A., Integral equations on the half-line: A modified finite-section approximation, Math. Comput., 47, 589-595 (1986) · Zbl 0611.65093
[36] ul Islam, S.; Aziz, I.; Al-Fhaid, A., An improved method based on Haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders, J. Comput. Appl. Math., 260, 449-469 (2014) · Zbl 1293.65173
[37] ul Islam, S.; Aziz, I.; Fayyaz, M., A new approach for numerical solution of integro-differential equations via Haar wavelets, Int. J. Comput. Math., 90, 9, 1971-1989 (2013) · Zbl 1291.45001
[38] Vainikko, G., Galerkin’s perturbation method and the general theory of approximate methods for non-linear equations, Ussr Comput. Math. Math. Phys., 7, 4, 1-41 (1967) · Zbl 0213.16201
[39] Vladimirov, V. S., On the equation of the p-adic open string for the scalar tachyon field, Izv. Math., 69, 487-512 (2005) · Zbl 1086.81073
[40] Vladimirov, V. S.; Volovich, Y. I., Nonlinear dynamics equation in p-adic string theory, Theor. Math. Phys., 138, 297-309 (2004) · Zbl 1178.81174
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.