×

Goal-oriented a posteriori error estimation for the biharmonic problem based on an equilibrated moment tensor. (English) Zbl 1524.65845

Summary: In this article, we discuss goal-oriented a posteriori error estimation for the biharmonic plate bending problem. The error for a numerical approximation of a goal functional is represented by several computable estimators. One of these estimators is obtained using the dual-weighted residual method, which takes advantage of an equilibrated moment tensor. Then, an abstract unified framework for the goal-oriented a posteriori error estimation is derived based on the equilibrated moment tensor and the potential reconstruction that provides a guaranteed upper bound for the error of a numerical approximation for the goal functional. In particular, \(C^0\) interior penalty and discontinuous Galerkin finite element methods are employed for the practical realisation of the estimators. Numerical experiments are performed to illustrate the effectivity of the estimators.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
74S05 Finite element methods applied to problems in solid mechanics
31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions
74K20 Plates
35Q74 PDEs in connection with mechanics of deformable solids

References:

[1] Ainsworth, M.; Rankin, R., Guaranteed computable bounds on quantities of interest in finite element computations, Int. J. Numer. Methods Eng., 89, 1605-1634 (2012) · Zbl 1242.65232
[2] Bangerth, W.; Rannacher, R., Adaptive Finite Element Methods for Differential Equations, Lectures in Mathematics ETH Zürich (2003), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1020.65058
[3] Becker, R.; Rannacher, R., An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer., 10, 1-102 (2001) · Zbl 1105.65349
[4] Braess, D., Finite Elements, Theory, Fast Solvers, and Applications in Elasticity Theory (2007), Cambridge · Zbl 1180.65146
[5] Braess, D.; Hoppe, R. H.W.; Linsenmann, C., A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation, ESAIM: Math. Model. Numer. Anal., 52, 2479-2504 (2018) · Zbl 1419.31004
[6] Braess, D.; Pechstein, A. S.; Schöberl, J., An equilibration-based a posteriori error bound for the biharmonic equation and two finite element methods, IMA J. Numer. Anal., 40, 951-975 (2020) · Zbl 1464.65171
[7] Brenner, S. C.; Gudi, T.; Sung, L.-Y., An a posteriori error estimator for a quadratic \(C^0\)-interior penalty method for the biharmonic problem, IMA J. Numer. Anal., 30, 777-798 (2010) · Zbl 1201.65197
[8] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (2007), Springer
[9] Brenner, S. C.; Sung, L.-Y., \( C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput., 22/23, 83-118 (2005) · Zbl 1071.65151
[10] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15 (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0788.73002
[11] Bürg, M.; Nazarov, M., Goal-oriented adaptive finite element methods for elliptic problems revisited, J. Comput. Appl. Math., 287, 125-147 (2015) · Zbl 1316.65098
[12] Carstensen, C.; Mallik, G.; Nataraj, N., A priori and a posteriori error control of discontinuous Galerkin finite element methods for the von Kármán equations, IMA J. Numer. Anal., 39, 167-200 (2019) · Zbl 1465.65129
[13] Chaudhry, J. H.; Cyr, E. C.; Liu, K.; Manteuffel, T. A.; Olson, L. N.; Tang, L., Enhancing least-squares finite element methods through a quantity-of-interest, SIAM J. Numer. Anal., 52, 3085-3105 (2014) · Zbl 1312.65186
[14] Ciarlet, P. G., Interpolation error estimates for the reduced Hsieh-Clough-Tocher triangle, Math. Comput., 32, 335-344 (1978) · Zbl 0378.65010
[15] Comodi, M. I., The Hellan-Herrmann-Johnson method: some new error estimates and postprocessing, Math. Comput., 52, 17-29 (1989) · Zbl 0665.65082
[16] Di Pietro, D. A.; Ern, A., Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques & Applications (Berlin), vol. 69 (2012), Springer: Springer Heidelberg · Zbl 1231.65209
[17] Endtmayer, B.; Wick, T., A partition-of-unity dual-weighted residual approach for multi-objective goal functional error estimation applied to elliptic problems, Comput. Methods Appl. Math., 17, 575-599 (2017) · Zbl 1434.65252
[18] Fraunholz, T.; Hoppe, R. H.W.; Peter, M., Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the biharmonic problem, J. Numer. Math., 23, 317-330 (2015) · Zbl 1328.65237
[19] Georgoulis, E. H.; Houston, P., Discontinuous Galerkin methods for the biharmonic problem, IMA J. Numer. Anal., 29, 573-594 (2009) · Zbl 1176.65134
[20] Georgoulis, E. H.; Houston, P.; Virtanen, J., An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems, IMA J. Numer. Anal., 31, 281-298 (2011) · Zbl 1209.65124
[21] Giles, M. B.; Süli, E., Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality, Acta Numer., 11, 145-236 (2002) · Zbl 1105.65350
[22] Gonçalves, J.a. L.; Gomes, S. M.; Devloo, P. R.B., A goal-oriented hp-adaptive discontinuous Galerkin approach for biharmonic problems, Int. J. Numer. Methods Eng., 97, 274-297 (2014) · Zbl 1352.65504
[23] Grisvard, P., Singularities in Boundary Value Problems, vol. RMA 22 (1992), Masson & Springer-Verlag · Zbl 0766.35001
[24] Gudi, T., A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comput., 79, 2169-2189 (2010) · Zbl 1201.65198
[25] Hartmann, R., Multitarget error estimation and adaptivity in aerodynamic flow simulations, SIAM J. Sci. Comput., 31, 708-731 (2008) · Zbl 1404.76163
[26] Ladevèze, P., Strict upper error bounds on computed outputs of interest in computational structural mechanics, Comput. Mech., 42, 271-286 (2008) · Zbl 1144.74041
[27] Ladevèze, P.; Chamoin, L., Calculation of strict error bounds for finite element approximations of non-linear pointwise quantities of interest, Int. J. Numer. Methods Eng., 84, 1638-1664 (2010) · Zbl 1202.74175
[28] Ladevèze, P.; Pled, F.; Chamoin, L., New bounding techniques for goal-oriented error estimation applied to linear problems, Int. J. Numer. Methods Eng., 93, 1345-1380 (2013) · Zbl 1352.74389
[29] Mallik, G.; Vohralík, M.; Yousef, S., Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers, J. Comput. Appl. Math., 366, Article 112367 pp. (2020) · Zbl 1490.65282
[30] Mommer, M. S.; Stevenson, R., A goal-oriented adaptive finite element method with convergence rates, SIAM J. Numer. Anal., 47, 861-886 (2009) · Zbl 1195.65174
[31] Mozolevski, I.; Prudhomme, S., Goal-oriented error estimation based on equilibrated-flux reconstruction for finite element approximations of elliptic problems, Comput. Methods Appl. Mech. Eng., 288, 127-145 (2015) · Zbl 1425.65173
[32] Oden, J. T.; Prudhomme, S., Goal-oriented error estimation and adaptivity for the finite element method, Comput. Math. Appl., 41, 735-756 (2001) · Zbl 0987.65110
[33] Prager, W.; Synge, J. L., Approximations in elasticity based on the concept of function space, Q. Appl. Math., 5, 241-269 (1947) · Zbl 0029.23505
[34] Prudhomme, S.; Oden, J. T., On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors, New Advances in Computational Methods. New Advances in Computational Methods, Cachan, 1997. New Advances in Computational Methods. New Advances in Computational Methods, Cachan, 1997, Comput. Methods Appl. Mech. Eng., 176, 313-331 (1999) · Zbl 0945.65123
[35] Rey, V.; Gosselet, P.; Rey, C., Strict bounding of quantities of interest in computations based on domain decomposition, Comput. Methods Appl. Mech. Eng., 287, 212-228 (2015) · Zbl 1425.65176
[36] Rey, V.; Gosselet, P.; Rey, C., Strict lower bounds with separation of sources of error in non-overlapping domain decomposition methods, Int. J. Numer. Methods Eng., 108, 1007-1029 (2016) · Zbl 07870081
[37] Rey, V.; Rey, C.; Gosselet, P., A strict error bound with separated contributions of the discretization and of the iterative solver in non-overlapping domain decomposition methods, Comput. Methods Appl. Mech. Eng., 270, 293-303 (2014) · Zbl 1296.65167
[38] Stevenson, R., The completion of locally refined simplicial partitions created by bisection, Math. Comput., 77, 227-241 (2008), (electronic) · Zbl 1131.65095
[39] van Brummelen, E. H.; Zhuk, S.; van Zwieten, G. J., Worst-case multi-objective error estimation and adaptivity, Comput. Methods Appl. Mech. Eng., 313, 723-743 (2017) · Zbl 1439.65197
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.