×

The solution of nonlinear Green-Naghdi equation arising in water sciences via a meshless method which combines moving Kriging interpolation shape functions with the weighted essentially non-oscillatory method. (English) Zbl 1524.65452

Summary: In this investigation a new meshless numerical technique is proposed for solving Green-Naghdi equation by combining the moving Kriging interpolation shape functions with the weighted essentially non-oscillatory (WENO) method. The present approach has been taken from [J.-C. Chassaing et al., Comput. Methods Appl. Mech. Eng. 253, 463–478 (2013; Zbl 1297.76110); J. Guo and J.-H. Jung, Appl. Numer. Math. 112, 27–50 (2017; Zbl 1354.65177)]. The convergence order of WENO technique can be studied by the number of interpolation nodes because this method is described by interpolation concept. The proposed method is based on the non-polynomial WENO procedure in order to increase the convergence order and local accuracy. Four examples have been solved that they show the efficiency and accuracy of the proposed method.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
65D05 Numerical interpolation
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Benkhaldoun, F.; Seaïd, M., A simple finite volume method for the shallow water equations, J Comput Appl Math, 234, 58-72 (2010) · Zbl 1273.76287
[5] Bonneton, P.; Chazel, F.; Lannes, D.; Marche, F.; Tissier, M., A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model, J Comput Phys, 230, 1479-1498 (2011) · Zbl 1391.76066
[6] Bourdarias, C.; Gerbi, S.; Lteif, R., A numerical scheme for an improved Green-Naghdi model in the Camassa-Holm regime for the propagation of internal waves, Comput Fluids, 156, 283-304 (2017) · Zbl 1390.76400
[7] Bui, T. Q.; Zhang, C., Moving kriging interpolation-based meshfree method for dynamic analysis of structures, Proc Appl Math Mech, 11, 197-198 (2011)
[8] Chazel, F.; Lannes, D.; Marche, F., Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model, J Sci Comput, 48, 105-116 (2011) · Zbl 1419.76454
[9] Chen, L.; Liew, K. M., A local Petrov-Galerkin approach with moving kriging interpolation for solving transient heat conduction problems, Comput Mech, 47, 455-467 (2011) · Zbl 1241.80005
[10] Cienfuegos, R.; Barthelemy, E.; Bonneton, P., A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive boussinesq-type equations. part i : model development and analysis, Int J Numer Method Fluids, 51, 1217-1253 (2006) · Zbl 1158.76361
[11] Cienfuegos, R.; Barthelemy, E.; Bonneton, P., A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. part II : boundary conditions and validation, Int J Numer Meth Fluids, 53, 1423-1455 (2007) · Zbl 1370.76090
[13] Choi, D. Y.; Wu, C. H.; Young, C. C., An efficient curvilinear non-hydrostatic model for simulating surface water waves, Int J Numer Meth Fluids, 66, 1093-1115 (2011) · Zbl 1316.76061
[14] Dai, B. D.; Cheng, J.; Zheng, B. J., Numerical solution of transient heat conduction problems using improved meshless local Petrov-Galerkin method, Appl Math Comput, 219, 10044-10052 (2013) · Zbl 1307.80008
[16] Dehghan, M.; Jazlanian, R., A high-order non-oscillatory central scheme with non-staggered grids for hyperbolic conservation laws, Comput Phys Commun, 182, 6, 1284-1294 (2011) · Zbl 1262.65098
[17] Dehghan, M.; Salehi, R., A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation, Appl Math Model, 36, 5, 1939-1956 (2012) · Zbl 1243.76069
[18] Dehghan, M.; Fakhar-Izadi, F., The spectral collocation method with three different bases for solving a nonlinear partial differential equation arising in modeling of nonlinear waves, Math Comput Model, 53, 9, 1865-1877 (2011) · Zbl 1219.65106
[19] Dehghan, M.; Shakeri, F., Use of He’s homotopy perturbation method for solving a partial differential equation arising in modeling of flow in porous media, J Porous Media, 11, 8, 765-778 (2008)
[20] Dias, F.; Milewski, P., On the fully-nonlinear shallow-water generalized Serre equations, Phys Lett A, 374, 1049-1053 (2010) · Zbl 1236.76013
[21] Dong, H.; Li, M., A reconstructed central discontinuous Galerkin-finite element method for the fully nonlinear weakly dispersive Green-Naghdi model, Appl Numer Math, 110, 110-127 (2016) · Zbl 1462.65139
[23] Duan, W. Y.; Zheng, K.; Zhao, B. B.; Ertekin, R. C., Steady solutions of high-level irrotational Green-Naghdi equations for strongly nonlinear periodic waves, Wave Motion, 72, 303-316 (2017) · Zbl 1524.35458
[24] Duran, A.; Marche, F., A discontinuous Galerkin method for a new class of Green-Naghdi equations on simplicial unstructured meshes, Appl Math Model, 45, 840-864 (2017) · Zbl 1446.76016
[25] D. Dutykh, D. Clamond, P. Milewski, D. Mitsotakis. Finite volume and pseudo-spectral schemes for the fully nonlinear 1d Serre equations. 2011. ArXiv e-prints, April.; D. Dutykh, D. Clamond, P. Milewski, D. Mitsotakis. Finite volume and pseudo-spectral schemes for the fully nonlinear 1d Serre equations. 2011. ArXiv e-prints, April. · Zbl 1400.65053
[26] Drazin, P. G.; Johnson, R. S., Solitons: an introduction (1989), Cambridge University Press: Cambridge University Press London, Cambridge · Zbl 0661.35001
[27] M.S. Fabien. A radial basis function (RBF) method for the fully nonlinear 1d Serre Green-Naghdi equations. 2014. ArXiv preprint arXiv:1407.4300.; M.S. Fabien. A radial basis function (RBF) method for the fully nonlinear 1d Serre Green-Naghdi equations. 2014. ArXiv preprint arXiv:1407.4300.
[28] Gu, L., Moving kriging interpolation and element-free Galerkin method, Int J Numer Meth Eng, 56, 1-11 (2003) · Zbl 1062.74652
[29] Gu, Y. T.; Wang, Q. X.; Lam, K. Y., A meshless local kriging method for large deformation analyses, Comput Methods Appl Mech Eng, 196, 1673-1684 (2007) · Zbl 1173.74471
[31] Guyenne, P.; Grilli, S. T., Numerical study of three-dimensional overturning waves in shallow water, J Fluid Mech, 547, 361-388 (2006) · Zbl 1082.76019
[33] Grilli, S. T.; Guyenne, P.; Dias, F., A fully nonlinear model for three-dimensional overturning waves over an arbitrary bottom, Int J Numer Meth Fluids, 35, 829-867 (2001) · Zbl 1039.76043
[34] Israwi, S., Derivation and analysis of a new 2d Green-Naghdi system, Nonlinearity, 23, 2889-2904 (2010) · Zbl 1202.35125
[35] Lam, K. Y.; Wang, Q. X.; Li, H., A novel meshless approach local kriging (lokriging) method with two-dimensional structural analysis, Comput Mech, 33, 235-244 (2004) · Zbl 1067.74074
[36] Lannes, D.; Marche, F., A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2d simulations, J Comput Phy, 282, 238-268 (2015) · Zbl 1351.76114
[37] Li, X. G.; Dai, B. D.; Wang, L. H., A moving kriging interpolation-based boundary node method for two-dimensional potential problems, Chin Phys B, 19, 12, 120202-120207 (2010)
[38] Li, Y. A., Linear stability of solitary waves of the Green-Naghdi equations, Commun Pure Appl Math, 54, 501-536 (2001) · Zbl 1032.35158
[39] Li, M.; Jiang, Y.; Dong, H., High order well-balanced central local discontinuous Galerkin-finite element methods for solving the Green-Naghdi model, Appl Math Comput, 315, 113-130 (2017) · Zbl 1426.76285
[40] Li, M.; Guyenne, P.; Li, F.; Xu, L., High order well-balanced CDG-FE methods for shallow water waves by a Green-Naghdi model, J Comp Phys, 257, 169-192 (2014) · Zbl 1349.76233
[41] Li, H.; Wang, Q. X.; Lam, K. Y., Development of a novel meshless local kriging (lokriging) method for structural dynamic analysis, Comput Methods Appl Mech Eng, 193, 2599-2619 (2004) · Zbl 1067.74598
[42] Luo, Z. D.; Gao, J.; Xie, Z., Reduced-order finite difference extrapolation model based on proper orthogonal decomposition for two-dimensional shallow water equations including sediment concentration, J Math Anal Appl, 429, 901-923 (2015) · Zbl 1318.35083
[43] Metayer, O. L.; Gavrilyuk, S.; Hank, S., A numerical scheme for the Green-Naghdi model, J Comp Phys, 229, 2034-2045 (2010) · Zbl 1303.76105
[44] Panda, N.; Dawson, C.; Zhang, Y.; Kennedy, A. B.; Westerink, J. J.; Donahue, A. S., Discontinuous Galerkin methods for solving Boussinesq-Green-Naghdi equations in resolving non-linear and dispersive surface water waves, J Comput Phys, 273, 572-588 (2014) · Zbl 1351.76074
[45] Pearce, J. D.; Esler, J. G., A pseudo-spectral algorithm and test cases for the numerical solution of the two-dimensional rotating Green-Naghdi shallow water equations, J Comput Phys, 229, 7594-7608 (2010) · Zbl 1425.76176
[46] Popinet, S., A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations, J Comput Phys, 302, 336-358 (2015) · Zbl 1349.76377
[47] Saadatmandi, A.; Dehghan, M., The he’s variational iteration method for solving a partial differential equation arising in modeling of the water waves, Zeitschrift fuer Naturforschung A, 64a, 12, 783-787 (2009)
[48] Seabra-Santos, F. J.; Renouard, D. P.; Temperville, A. M., Numerical and experimental study of transformation of a solitary wave over a shelf or isolated obstacle, J Fluid Mech, 176, 117-134 (1987)
[49] Serre, F., Contribution ltude des coulements permanents et variables dans les canaux, La Houille Blanche, 8, 374-388 (1953)
[50] Shokri, A.; Dehghan, M., A not-a-knot meshless method using radial basis functions and predictor-corrector scheme to the numerical solution of improved boussinesq equation, Comput Phys Commun, 181, 12, 1990-2000 (2010) · Zbl 1426.76569
[51] Su, C. H.; Gardner, C. S., Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation, J Math Phys, 10, 536-539 (1969) · Zbl 0283.35020
[52] Wei, G.; Kirby, J. T.; Grilli, S. T.; Subramanya, R., A fully nonlinear Boussinesq model for surface waves, part 1, highly nonlinear unsteady waves, J Fluid Mech, 294, 71-92 (1995) · Zbl 0859.76009
[53] Wei, Z.; Dalrymple, R. A.; Herault, A.; Bilotta, G.; Rustico, E.; Yeh, H., SPH Modeling of dynamic impact of tsunami bore on bridge piers, Coast Eng, 104, 26-42 (2015)
[54] Wei, Z.; Dalrymple, R. A., Numerical study on mitigating tsunami force on bridges by an SPH model, J Ocean Eng Marine Energy, 2, 365-380 (2016)
[55] Wei, Z.; Dalrymple, R. A.; Rustico, E.; Herault, A.; Bilotta, G., Simulation of near-shore Tsunami breaking by smoothed particle hydrodynamics method, J Waterway Port Coast Ocean Eng, 142 (2016)
[56] Xu, L.; Guyenne, P., Numerical simulation of three-dimensional nonlinear water waves, J Comput Phys, 228, 8446-8466 (2009) · Zbl 1423.76071
[57] Zheng, B.; Dai, B., A meshless local moving kriging method for two-dimensional solids, Appl Math Comput, 218, 563-573 (2011) · Zbl 1275.74033
[58] Zhu, P.; Zhang, L. W.; Liew, K. M., Geometrically nonlinear thermo-mechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving kriging interpolation, Compos Struct, 107, 298-314 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.