×

A review note on arbitrary precision arithmetic. (English) Zbl 1524.65203

Summary: In this paper, we present a note on arbitrary precision. We give two simple examples showing the need of using arbitrary precision arithmetic. Next, we discuss how to use arbitrary precision arithmetic types in MATLAB/OCTAVE and further present short descriptions of several basic, in particular C/C++, packages for using arbitrary precision arithmetic in numerical codes for scientific computations. Finally, we discuss the contribution of one of the authors in the development of a library for arbitrary precision floating point numbers briefly.

MSC:

65G50 Roundoff error
68W30 Symbolic computation and algebraic computation
Full Text: DOI

References:

[1] GNU Octave Symbolic Package, August 2022.
[2] Maple, Maplesoft, a division of Waterloo Maple Inc., 2022.
[3] Mathematica, Version 13.2, Wolfram Research, Inc., 2022.
[4] Matlab, version 9.13 (r2022a), The MathWorks Inc., 2022.
[5] D. H. Bailey, R. Barrio, and J. M. Borwein. High-precision computation: mathematical physics and dynamics. Appl. Math. Comput., 218(20):10106-10121, 2012.
· Zbl 1248.65147
[6] D. H. Bailey, R. Barrio, and J. M. Borwein. High-precision arithmetic in mathematical physics. Mathematics, 3(2):337-367, 2015.
· Zbl 1318.65025
[7] D. H. Bailey and J. M. Borwein. High-precision numerical integration: progress and challenges. J. Symbolic Comput., 46(7):741-754, 2011.
· Zbl 1291.65070
[8] G. Beliakov and Y. Matiyasevich. A parallel algorithm for calculation of determinants and minors using arbitrary precision arithmetic. BIT, 56(1):33-50, 2016.
· Zbl 1338.65117
[9] D. Braess. Finite elements. Cambridge University Press, Cambridge, third edition, 2007. Theory, fast solvers, and applications in elasticity theory, Translated from the German by Larry L. Schumaker.
· Zbl 1180.65146
[10] J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring. GNU Oc-
tave version 6.1.0 manual: a high-level interactive language for numerical computations, 2020.
[11] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Transactions on Mathematical Software, 33(2):13:1-15, 2007.
· Zbl 1365.65302
[12] G. Guennebaud, B. Jacob, et al. Eigen v3.4.0. http://eigen.tuxfamily.org, August 2021.
[13] A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. In S. R. S., C. M., P. R., A. W. F., and V. R., editors, Scientific Computing. Applications of Mathematics and Computing to the Physical Sciences, pages 55-64. North-Holland, Amsterdam, 1983.
[14] D. Kincaid and W. Cheney. Numerical analysis. Brooks/Cole Publishing Co., Pacific Grove, CA, second edition, 1996. Mathematics of scientific computing.
· Zbl 0877.65002
[15] K. R. Meyer and D. S. Schmidt, editors. Computer aided proofs in analysis, volume 28 of The IMA Volumes in Mathematics and its Applications. Springer-Verlag, New York, 1991.
[16] R. E. Moore. Interval tools for computer aided proofs in analysis. In Computer aided proofs in analysis (Cincinnati, OH, 1989), volume 28 of IMA Vol. Math. Appl., pages 211-216. Springer, New York, 1991.
· Zbl 0753.65036
[17] M. T. Nakao, M. Plum, and Y. Watanabe. Numerical verification methods and computer-assisted proofs for partial differential equations, volume 53 of Springer Series in Computational Mathematics. Springer, Singapore, 2019.
· Zbl 1462.65004
[18] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical recipes. The art of scientific computing. Cambridge University Press, Cambridge, third edition, 2007. Section 18.1 The shooting method.
· Zbl 0587.65003
[19] K. Radhakrishnan and A. C. Hindmarsh. Description and use of lsode, the Livermore solver for ordinary differential equations. Technical Report UCRL-ID-113855, Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 12 1993.
[20] S. M. Rump. Verification methods: rigorous results using floating-point arithmetic. Acta Numer., 19:287-449, 2010.
· Zbl 1323.65046
[21] V. Stoddent, D. H. Bailey, J. Borwein, R. J. LeVeque, W. Rider, and W. Stein. Setting the default to reproducible. Reproducibility in computational and experimental mathematics. Technical report, The Institute for Computational and Experimental Research in Mathematics, February 2013.
[22] J. Stoer and R. Bulirsch. Introduction to numerical analysis, volume 12 of Texts in Applied Mathematics. Springer-Verlag, New York, third edition, 2002. Translated from the German by R. Bartels, W. Gautschi and C. Witzgall.
· Zbl 1004.65001
[23] J. Valdman. Vybrané úlohy řešené na počítači: diskrétní a numerická matematika. Jihočeská univerzita v Českých Budějovicích, 2022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.