×

A numerical study of a degenerate diffusion equation driven by a Heaviside function. (English) Zbl 1524.49013

Summary: We analyze a nonlinear degenerate parabolic problem whose diffusion coefficient is the Heaviside function of the distance of the solution itself from a given target function. We show that this model behaves as an evolutive variational inequality having the target as an obstacle: under suitable hypotheses, starting from an initial state above the target the solution evolves in time towards an asymptotic solution, eventually getting in contact with part of the target itself.
We also study a finite difference approach to the solution of this problem, using the exact Heaviside function or a regular approximation of it, showing the results of some numerical tests.

MSC:

49J40 Variational inequalities
65K10 Numerical optimization and variational techniques
35K55 Nonlinear parabolic equations
35J20 Variational methods for second-order elliptic equations

References:

[1] Ion, S.; Marinoschi, G., A self-organizing criticality mathematical model for contamination and epidemic spreading, Discrete Contin. Dyn. Syst. Ser. B, 22, 2, 383-405 (2017) · Zbl 1360.35103
[2] Barbu, V., Self-organized criticality of cellular automata model; absorbtion in finite-time of supercritical region into the critical one, Math. Methods Appl. Sci., 36, 13, 1726-1733 (2013) · Zbl 1273.35158
[3] Mosco, U., Finite-time self-organized-criticality on synchronized infinite grids, SIAM J. Math. Anal., 50, 3, 2409-2440 (2018) · Zbl 1400.82188
[4] Alberini, C.; S., Finzi Vita, A numerical approach to a nonlinear diffusion model for self-organized criticality phenomena, (Lancia, M.; Rozanova, A., FRACTALS (Fractals in Engineering: Theoretical Aspects and Numerical Approximation). FRACTALS (Fractals in Engineering: Theoretical Aspects and Numerical Approximation), ICIAM 2019 (2021)), in press
[5] Mosco, U.; Vivaldi, M. A., On a discrete self-organized-criticality finite time result, Discrete Contin. Dyn. Syst., 40, 8, 5079-5103 (2020) · Zbl 1448.35297
[6] Lo Giudice, A.; Giammanco, G.; Fransos, D.; Preziosi, L., Modelling sand slides by a mechanics-based degenerate parabolic equation, Math. Mech. Solids, 24, 8, 2558-2575 (2019) · Zbl 07254369
[7] Akagi, G.; Kimura, M., Unidirectional evolution equations of diffusion type, J. Differential Equations, 266, 1, 1-43 (2019) · Zbl 1403.35141
[8] Glowinski, R.; Lions, J. L.; Trémolières, R., Numerical Analysis of Variational Inequalities (1981), North-Holland: North-Holland Amsterdam, Holland · Zbl 0508.65029
[9] Hoppe, R.; Kornhuber, R., Adaptive multilevel methods for obstacle problems, SIAM J. Numer. Anal., 31, 301-323 (1994) · Zbl 0806.65064
[10] Karkkainen, T.; Kunisch, K.; Tarvainen, P., Augmented Lagrangian active set methods for obstacle problems, J. Optim. Theory Appl., 119, 3, 499-533 (2003) · Zbl 1045.49026
[11] Brugnano, L.; Sestini, A., Iterative solution of piecewise linear systems for the numerical solution of obstacle problems, J. Numer. Anal. Ind. Appl. Math., 6, 3-4, 67-82 (2011) · Zbl 1432.65079
[12] Zosso, D.; Osting, B.; Xia, M.; Osher, S. J., An efficient primal-dual method for the obstacle problem, J. Sci. Comput., 73, 1, 416-437 (2017) · Zbl 1379.35093
[13] Brezis, H., Problèmes unilatéraux, J. Math. Pures Appl., 51, 9, 1-168 (1972) · Zbl 0237.35001
[14] Charrier, P.; Troianiello, G. M., On strong solutions of parabolic unilateral problems with obstacle dependent on time, J. Math. Anal. Appl., 65, 110-125 (1978) · Zbl 0387.35012
[15] Friedman, A., Variational Principles and Free-Boundary Problems (1982), John Wiley & Sons · Zbl 0564.49002
[16] Caffarelli, L. A., The obstacle problem revisited, J. Fourier Anal. Appl., 4, 383-402 (1998) · Zbl 0928.49030
[17] Troianiello, G. M., (Elliptic Differential Equations and Obstacle Problems. Elliptic Differential Equations and Obstacle Problems, The University Series in Mathematics (1987), Plenum Press: Plenum Press New York) · Zbl 0655.35002
[18] Colombo, M.; Spolaor, L.; Velichkov, B., On the asymptotical behavior of the solutions to parabolic variational inequalities, J. Reine Angew. Math., 768, 149-182 (2020) · Zbl 1452.35033
[19] Barles, G.; Souganidis, P. E., Convergence of approximation schemes for fully nonlinear second order equations, Asympt. Anal., 4, 271-283 (1991) · Zbl 0729.65077
[20] Alberini, C.; Capitanelli, R.; D’Ovidio, M.; S., Finzi Vita, On the time-fractional heat equation with obstacle (2020), preprint arXiv:2012.12023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.