×

A new and efficient approach for solving linear and nonlinear time-fractional diffusion equations of distributed order. (English) Zbl 1524.35689

Summary: This paper is concerned with a computational approach based on the Jacobi wavelets for linear and nonlinear time-fractional diffusion equations of distributed order. We derive the Jacobi wavelet operational vector for the Riemann-Liouville fractional integral operator. By applying this operational vector via the Gauss-Legendre quadrature formula and collocation method in our approach, the problems can be reduced to systems of linear or nonlinear algebraic equations which can be solved by the Newton method. The convergence and some error bounds of the expressed method are theoretically investigated. In addition, the presented method is implemented for six test problems. Comparisons between the obtained numerical results and other methods are provided. Numerical experiments illustrate the reliability, applicability, and efficiency of the proposed method.

MSC:

35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
65T60 Numerical methods for wavelets
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Amin, R.; Shah, K.; Asif, M.; Khan, I.; Ullah, F., An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet, J Comput Appl Math, 381, 113028 (2021) · Zbl 1451.65230
[2] Bisheh-Niasar, M.; Saadatmandi, A.; Akrami-Arani, M., A new family of high-order difference schemes for the solution of second order boundary value problems, Iran J Math Chem, 9, 3, 187-199 (2018) · Zbl 1407.65245
[3] Canuto, C.; Hussaini, MY; Quarteroni, A.; Zang, TA, Spectral methods: fundamentals in single domains (2006), New York: Springer, New York · Zbl 1093.76002
[4] Chechkin, AV; Gorenflo, R.; Sokolov, IM, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys Rev E, 66 (2002)
[5] Chechkin, AV; Klafter, J.; Sokolov, IM, Fractional Fokker-Planck equation for ultraslow kinetics, Europhys Lett, 63, 326-332 (2003)
[6] Eftekhari, T.; Rashidinia, J., A novel and efficient operational matrix for solving nonlinear stochastic differential equations driven by multi-fractional Gaussian noise, Appl Math Comput, 429, 127218 (2022) · Zbl 1510.60064
[7] Eftekhari, T.; Rashidinia, J., A new operational vector approach for time-fractional subdiffusion equations of distributed order based on hybrid functions, Math Meth Appl Sci (2022) · Zbl 1510.60064 · doi:10.1002/mma.8517
[8] Eftekhari, T.; Maleknejad, K.; Rashidinia, J., Existence, uniqueness, and approximate solutions for the general nonlinear distributed-order fractional differential equations in a Banach space, Adv Differ Equ, 1, 1-22 (2021) · Zbl 1494.34026
[9] Esmaeili, SH; Shamsi, M.; Luchkob, Y., Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials, Comput Math Appl, 62, 918-929 (2011) · Zbl 1228.65132
[10] Ford, NJ; Morgado, ML; Rebelo, M., An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time, Electron Trans Numer Anal, 44, 289-305 (2015) · Zbl 1330.65130
[11] Gasca, M.; Sauer, T., On the history of multivariate polynomial interpolation, J Comput Appl Math, 122, 1, 23-35 (2000) · Zbl 0968.65008
[12] Hou, Y.; Wen, C.; Li, H.; Liu, Y.; Fang, Z.; Yang, Y., some second-order schemes combined with an \(\text{H}^1-\) Galerkin MFE method for a nonlinear distributed-order sub-diffusion equation, Mathematics, 8, 2, 187 (2020)
[13] Hu, X.; Liu, F.; Anh, V.; Turner, I., A numerical investigation of the time distributed-order diffusion model, ANZIAM J, 55, 464-478 (2014) · Zbl 1390.65133
[14] Jiao, Z.; Chen, YQ; Podlubny, I., Distributed order dynamic system stability. Simulation and perspective (2012), London: Springer, London · Zbl 1401.93005
[15] Khalil, H.; Shah, K.; Khan, RA, Approximate solution of boundary value problems using shifted Legendre polynomials, Appl Comput Math, 16, 3, 1-15 (2017) · Zbl 1390.42002
[16] Kilbas, A.; Srivastava, H.; Trujillo, J., Theory and applications of fractional differential equations (2006), Boston: Elsevier Science and Technology, Boston · Zbl 1092.45003
[17] Li, Y.; Sheng, H.; Chen, YQ, On distributed order integrator/differentiator, Signal Process, 91, 1079-1084 (2011) · Zbl 1219.94039
[18] Liu, DY; Tian, Y.; Boutata, D.; Laleg-Kirati, TM, An algebraic fractional order differentiator for a class of signals satisfying a linear differential equation, Signal Process, 116, 78-90 (2015)
[19] Magin, RL, Fractional calculus in bioengineering, Crit Rev Biomed Eng, 32, 1-104 (2004)
[20] Magin, RL, Fractional calculus models of complex dynamics in biological tissues, Comput Math Appl, 59, 1586-1593 (2010) · Zbl 1189.92007
[21] Maleknejad, K.; Rashidinia, J.; Eftekhari, T., Numerical solution of three-dimensional Volterra-Fredholm integral equations of the first and second kinds based on Bernstein’s approximation, Appl Math Comput, 339, 272-285 (2018) · Zbl 1429.65317
[22] Maleknejad, K.; Rashidinia, J.; Eftekhari, T., Existence, uniqueness, and numerical analysis of solutions for some classes of two-dimensional nonlinear fractional integral equations in a Banach space, Comput Appl Math, 39, 4, 1-22 (2020) · Zbl 1474.65503
[23] Maleknejad, K.; Rashidinia, J.; Eftekhari, T., Operational matrices based on hybrid functions for solving general nonlinear two-dimensional fractional integro-differential equations, Comp Appl Math, 39, 103 (2020) · Zbl 1463.65428
[24] Maleknejad, K.; Rashidinia, J.; Eftekhari, T., A new and efficient numerical method based on shifted fractional-order Jacobi operational matrices for solving some classes of two-dimensional nonlinear fractional integral equations, Numer Methods Partial Differ Equ, 37, 3, 2687-2713 (2021) · Zbl 07776092
[25] Maleknejad, K.; Rashidinia, J.; Eftekhari, T., Numerical solutions of distributed order fractional differential equations in the time domain using the Müntz-Legendre wavelets approach, Numer Methods Partial Differ Equ, 37, 1, 707-731 (2021) · Zbl 1534.65206
[26] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys Rep, 339, 1-77 (2000) · Zbl 0984.82032
[27] Miller, KS; Ross, B., An introduction to the fractional calculus and fractional differential equations (1993), New York: Wiley, New York · Zbl 0789.26002
[28] Mirzaee, F.; Samadyar, N., Implicit meshless method to solve 2D fractional stochastic Tricomi-type equation defined on irregular domain occurring in fractal transonic flow, Numer Methods Partial Differ Equ, 37, 2, 1781-1799 (2021) · Zbl 07776043
[29] Mirzaee, F.; Rezaei, S.; Samadyar, N., Solving one-dimensional nonlinear stochastic sine-Gordon equation with a new meshfree technique, Int J Numer Model, 34, 4, e2856 (2021)
[30] Mirzaee, F.; Rezaei, S.; Samadyar, N., Numerical solution of two-dimensional stochastic time-fractional sine-Gordon equation on non-rectangular domains using finite difference and meshfree methods, Eng Anal Bound Elem, 127, 53-63 (2021) · Zbl 1464.65150
[31] Mirzaee, F.; Sayevand, K.; Rezaei, S.; Samadyar, N., Finite difference and spline approximation for solving fractional stochastic advection-diffusion equation, Iran J Sci Technol Trans A Sci, 45, 2, 607-617 (2021)
[32] Mirzaee, F.; Rezaei, S.; Samadyar, N., Solution of time-fractional stochastic nonlinear sine-Gordon equation via finite difference and meshfree techniques, Math Methods Appl Sci, 45, 7, 3426-3438 (2022) · Zbl 1531.65117
[33] Mirzaee, F.; Rezaei, S.; Samadyar, N., Application of combination schemes based on radial basis functions and finite difference to solve stochastic coupled nonlinear time fractional sine-Gordon equations, Comput Appl Math, 41, 1, 10 (2022) · Zbl 1499.35744
[34] Morgado, M.; Rebelo, M.; Ferrás, L.; Ford, N., Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method, Appl Numer Math, 114, 108-123 (2017) · Zbl 1357.65198
[35] Nemati, S.; Lima, PM; Ordokhani, Y., Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre polynomials, J Comput Appl Math, 242, 53-69 (2013) · Zbl 1255.65248
[36] Nikan, O.; Avazzadeh, Z., Numerical simulation of fractional evolution model arising in viscoelastic mechanics, Appl Numer Math, 169, 303-320 (2021) · Zbl 1486.65206
[37] Nikan, O.; Avazzadeh, Z.; Machado, JAT, Numerical approach for modeling fractional heat conducti andon in porous medium with the generalized Cattaneo model, Appl Math Model, 100, 107-124 (2021) · Zbl 1481.65150
[38] Nikan, O.; Avazzadeh, Z.; Machado, JAT, Numerical study of the nonlinear anomalous reaction-subdiffusion process arising in the electroanalytical chemistry, J Comput Sci, 53, 101394 (2021)
[39] Nikan, O.; Avazzadeh, Z.; Machado, JAT, Localized kernel-based meshless method for pricing financial options underlying fractal transmission system, Math Methods Appl Sci (2021) · Zbl 1543.91107 · doi:10.1002/mma.7968
[40] Oldham, KB, Fractional differential equations in electrochemistry, Adv Eng Soft, 41, 9-12 (2010) · Zbl 1177.78041
[41] Oldham KB, Spanier J (1974) The fractional calculus. Math Sci Eng 111 · Zbl 0292.26011
[42] Park, HW; Choe, J.; Kang, JM, Pressure behavior of transport in fractal porous media using a fractional calculus approach, Energy Sources, 22, 10, 881-890 (2000)
[43] Podlubny, I., Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (1998), Oxford: Elsevier, Oxford · Zbl 0924.34008
[44] Pourbabaee, M.; Saadatmandi, A., A novel Legendre operational matrix for distributed order fractional differential equations, Appl Math Comput, 361, 215-231 (2019) · Zbl 1428.34021
[45] Rashidinia, J.; Eftekhari, T.; Maleknejad, K., A novel operational vector for solving the general form of distributed order fractional differential equations in the time domain based on the second kind Chebyshev wavelets, Numer Algor, 88, 1617-1639 (2021) · Zbl 1482.65129
[46] Rashidinia, J.; Eftekhari, T.; Maleknejad, K., Numerical solutions of two-dimensional nonlinear fractional Volterra and Fredholm integral equations using shifted Jacobi operational matrices via collocation method, J King Saud Univ Sci, 33, 1, 1-11 (2021)
[47] Saadatmandi, A.; Khani, A.; Azizi, MR, A sinc-Gauss-Jacobi collocation method for solving Volterra’s population growth model with fractional order, Tbilisi Math J, 11, 2, 123-137 (2018) · Zbl 1434.65208
[48] Samko, SG; Kilbas, AA; Marichev, OI, Fractional integrals and derivatives (1993), Yverdon Yverdon-les-Bains: Gordon and Breach Science Publishers, Yverdon Yverdon-les-Bains · Zbl 0818.26003
[49] Tricaud, C.; Chen, Y., Optimal mobile sensing and actuation policies in cyber-physical systems (2012), London: Springer, London
[50] Wen, C.; Liu, Y.; Yin, B.; Li, H.; Wang, J., Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model, Numer Algorithms (2021) · Zbl 1483.65161 · doi:10.1007/s11075-020-01048-8
[51] Zaky, MA; Machado, JAT, On the formulation and numerical simulation of distributed-order fractional optimal control problems, Commun Nonlinear Sci Numer Simul, 52, 177-189 (2017) · Zbl 1510.49018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.