×

Optical solitons and rogue wave solutions of NLSE with variables coefficients and modulation instability analysis. (English) Zbl 1524.35579

Summary: In this work, we investigate soliton solutions of the generalized variable coefficients nonlinear Schrödinger equation. The Jacobi elliptic ansatz method is applied to obtain the optical soliton solutions. The necessary conditions that warrant the presence of these solutions are determined. We consider the Lie symmetry analysis of governing equation. Also, the stability of this equation is analyzed by the modulation instability.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35J10 Schrödinger operator, Schrödinger equation
33E05 Elliptic functions and integrals
Full Text: DOI

References:

[1] S. S. Afzal, M. Younis, and S. T. R.Rizvi, Optical dark and dark-singular solitons with anti-cubic nonlinearity, Optik, 147 (2017), 27-31.
[2] G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, USA, 2007.
[3] S. Ali, M. Younis, M. O. Ahmad, and S. T. R. Rizvi, Rogue wave solutions in nonlinear optics with coupled Schrödinger equations, Optical and Quantum Electronics, 50 (2018), 266. DOI.10.1007/s11082-018-1526-9. · doi:10.1007/s11082-018-1526-9
[4] M. M. Alipour, G. Domairy, and A. G. Dovadi, An Application of Exp-Function Method to Approximate General and Explicit Solutions for Nonlinear Schrödinger Equations, Numerical Methods for Partial Differential Equations, 27 (2011), 1016-1025. · Zbl 1226.65087
[5] A. Ankiewicz and N. Akhmediev, Rogue wave-type solutions of the mKdV equation and their relation to known NLSE rogue wave solutions, Nonlinear Dyn., 91 (2018), 1931-1938.
[6] E. C. Aslan and M. Inc, Soliton Solutions of NLSE with Quadratic-Cubic Nonlinearity and Stability Analysis, Waves in Random and Complex Media, 27 (2017), 594-601. · Zbl 07659361
[7] E. C. Aslan, M. Inc, and D. Baleanu, Optical solitons and stability analysis of the NLSE with anti-cubic nonlin-earity, Superlattices and Microstructures, 109 (2017), 784-793.
[8] M. Asma, W. A. M. Othman, B. R. Wong, and A. Biswas, Optical Soliton Perturbation with Quadratic-Cubic Nonlinearity by Semi-Inverse Variational Principle, Proceedings of The Romanian Academy, Series A, 18 (2017), 331-336.
[9] A. Bansal, A. Biswas, Q. Zhou, and M. M. Babatin, Lie symmetry analysis for cubic-quartic nonlinear Schrödinger’s equation, Optik, 169 (2018), 12-15.
[10] A. Bansal, A. H. Kara, A. Biswas, S. P. Moshokoa, and M. Belic, Optical soliton perturbation, group invariants and conservation laws of perturb e d Fokas-Lenells equation, Chaos, Solitons and Fractals, 114 (2018), 275-280. · Zbl 1415.35009
[11] A. Biswas, M. Ekici, A. Sonmezoglu, and M. R. Belic, Optical solitons in birefringent fibers having anti-cubic nonlinearity with extended trial function, Optik, 185 (2019), 456-463.
[12] A. Biswas, Optical soliton perturbation with Radhakrishnan-Kundu-Lakshmanan equation by traveling wave hy-pothesis, Optik, 171 (2018), 217-220.
[13] M. Dehghan, J. Manafian, and H. A Saadatmandi, Application of semi-analytic methods for theFitzhugh-Nagumo equation, which modelsthe transmission of nerve impulses, Math. Methods Appl. Sci., 33 (2010), 1384-1398. · Zbl 1196.35025
[14] H. I. A. Gawad, M. Tantawy, and R. E. A. Elkhair, On the extension of solutions of the real to complex KdV equation and a mechanism for the construction of rogue waves, Waves in Random and Complex Media, 26 (2016), 397-406. · Zbl 1366.35155
[15] K. Hosseini, J. Manafian, F. Samadani, M. Foroutan, M. Mirzazadeh, and Q. Zhou, Resonant optical solitons with perturbation terms andfractional temporal evolution using improved tan(φ(η)/2)-expansion method and exp function approach, Optik, 158 (2018), 933-939.
[16] S. L. Jia, Y. T. Gao, C. Zhao, J. W. Yang, and Y. J. Feng, Breathers and rogue waves for an eighth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber Waves, Random and Complex Media, 27(2017), 544-561. · Zbl 07659357
[17] B. Q. Li and Y. L. Man, Rogue waves for the optics fiber system with variable coefficients, Optik, 158 (2018), 177-187.
[18] J. Manafian, Optical soliton solutions for Schrödinger type nonlinear evolution equations by the tan(φ/2)-expansion method, Optik-Int. J. Elec. Opt., 127 (2016), 4222-4245.
[19] J. Manafian and M. Lakestani, Dispersive dark optical soliton with Tzitze ica type nonlinear evolution equations arising in nonlinear optics, Opt. Quantum Electron., 48 (2016), 1-32.
[20] J. Manafian, On the complex structures of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities, The Eur. Phys. J. Plus, 130 (2015), 1-20.
[21] C. Y. Qin, S. F. Tian, X. B. Wang, T. T. Zhang, and J. Li, Rogue waves, bright-dark solitons and traveling wave solutions of the (3 + 1)-dimensional generalized Kadomtsev-Petviashvili equation, Computers and Mathematics with Applications, 75 (2018), 4221-4231. · Zbl 1420.35323
[22] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Optical rogue waves, Nature, 450 (2007), 1054-1057.
[23] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Active control of rogue waves for simulated super continuum generation, Phys. Rev. Lett., 101 (2008), 275-278.
[24] K. U. Tariq and M. Younis, Bright, dark and other optical solitons with second order spatiotemporal dispersion, Optik, 142 (2017), 446-450.
[25] K. U.Tariq, M. Younis, and S. T. R. Rizvi, Optical solitons in monomode fibers with higher order nonlinear Schrödinger equation, Optik, 154 (2018), 360-371.
[26] F. Tchier, E. Cavlak Aslan, and M. Inc, Optical solitons for cascased system: Jacobi elliptic functions, J. Modern Optics, 63 (2016), 2298-2307.
[27] Y. Yang, X. Wang, and Z. Yan, Optical temporal rogue waves in the generalized inhomogeneous nonlinear Schrödinger equation with varying higher-order even and odd terms, Nonlinear Dyn., 81 (2015), 833-842. · Zbl 1347.37120
[28] Z. Yang and A. F. Cheviakov, Some relations between symmetries of nonlocally related systems, Journal of Math-ematical Physics, 55 (2014), 083514. · Zbl 1302.35024
[29] M. Younis, U.Younas, S. Rehman, M. Bilal, and A. Waheed, Optical bright-dark and Gaussian soliton with third order dispersion, Optik, 134 (2017), 233-238.
[30] M. Younis, S. Ali, and S. A. Mahmood, Solitons for compound KdV-Burgers equation with variable coefficients and power law nonlinearity, Nonlinear Dyn, 81(2015), 1191-1196. · Zbl 1348.35226
[31] X. Zhang and Y. Chen, Deformation rogue wave to the (2+1)-dimensional KdV equation, Nonlinear Dyn., 90(2017), 755-763.
[32] Z. Küçükarslan Yüzbaşı E. Cavlak Aslan, M. Inc, and D. Baleanu, On Exact Solutions for New Coupled Non-Linear Models Getting Evolution of Curves in Galilean Space, Thermal Science, 23 (2019), 227-233.
[33] Z. Küçükarslan Yüzbaşı E. Cavlak Aslan, and M. Inc, Lie Symmetry Analysis and Exact Solutions of Tzitzeica Surfaces PDE in Galilean Space, Journal of Advanced Physics, 7 (2018), 88-91.
[34] Z. Küçükarslan Yüzbaşı E. Cavlak Aslan, and M. Inc, Exact Solutions with Lie Symmetry Analysis for Nano-Ionic Currents along Microtubules, ITM Web of Conferences, 22 (2018), 01017.
[35] Z. Küçükarslan Yüzbaşı E. Cavlak Aslan, D. Baleanu, and M. Inc, Evolution of Plane Curves via Lie Symmetry Analysis in the Galilean Plane. Numerical Solutions of Realistic Nonlinear Phenomena, Springer International Publishing, Switzerland, Chapter 12, 2020. DOI: 10.1007/978-3-030-37141-8. · Zbl 1448.65009 · doi:10.1007/978-3-030-37141-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.