×

Delay-dependent and order-dependent asymptotic stability conditions for Riemann-Liouville fractional-order systems with time delays. (English) Zbl 1524.34180

Summary: In this paper, the asymptotic stability problem for Riemann-Liouville fractional-order systems with time delays is investigated. First, a new Lyapunov theorem for asymptotic stability is proved. Then, based on the Lyapunov theorem and fractional-order Jensen inequalities, two delay-dependent and order-dependent conditions for asymptotic stability of Riemann-Liouville fractional-order systems are derived by constructing new classes of Lyapunov functions. The derived criteria are described in terms of linear matrix inequalities, which are computationally efficient. Finally, an example is provided to demonstrate the effectiveness and less conservativeness of the proposed results.

MSC:

34K20 Stability theory of functional-differential equations
34K37 Functional-differential equations with fractional derivatives
Full Text: DOI

References:

[1] Altun, Y., Further results on the asymptotic stability of Riemann-Liouville fractional neutral systems with variable delays, Adv Differ Equ, 2019, 1, 1-13 (2019) · Zbl 1487.34136 · doi:10.1186/s13662-019-2366-z
[2] Altun, Y., Lmi based approach to asymptotically stability analysis for fractional neutral-type neural networks with Riemann-Liouville derivative, Nonlinear Stud, 29, 2, 635-647 (2022)
[3] Belarbi, S.; Dahmani, Z., On some new fractional integral inequalities, J Inequal Pure Appl Math, 10, 3, 1-12 (2009) · Zbl 1184.26011
[4] Čermák, J.; Hornicek, J.; Kisela, T., Stability regions for fractional differential systems with a time delay, Commun Nonlinear Sci Numer Simul, 31, 1, 108-123 (2016) · Zbl 1467.34082 · doi:10.1016/j.cnsns.2015.07.008
[5] Chen, B.; Chen, J., Razumikhin-type stability theorems for functional fractional-order differential systems and applications, Appl Math Comput, 254, 1, 63-69 (2015) · Zbl 1410.34209 · doi:10.1016/j.amc.2014.12.010
[6] Chen, L.; Wu, R.; Cheng, Y., Delay-dependent and order-dependent stability and stabilization of fractional-order linear systems with time-varying delay, IEEE Trans Circuits Syst II Express Briefs, 67, 6, 1064-1068 (2020) · doi:10.1109/TCSII.2019.2926135
[7] Du, F.; Lu, JG, New criterion for finite-time stability of fractional delay systems, Appl Math Lett, 104, 106, 248 (2020) · Zbl 1443.34085 · doi:10.1016/j.aml.2020.106248
[8] Du, F.; Lu, JG, New criteria on finite-time stability of fractional-order Hopfield neural networks with time delays, IEEE Trans Neural Netw Learn Syst, 32, 9, 3858-3866 (2021) · doi:10.1109/TNNLS.2020.3016038
[9] Du, F.; Lu, JG, Finite-time stability of fractional-order fuzzy cellular neural networks with time delays, Fuzzy Sets Syst, 438, 107-120 (2022) · Zbl 1522.93156 · doi:10.1016/j.fss.2021.08.011
[10] Gallegos, JA; Duarte-Mermoud, MA, Attractiveness and stability for Riemann-Liouville fractional systems, Electron J Qual Theory Differ, 2018, 73 (2018) · Zbl 1413.34022 · doi:10.14232/ejqtde.2018.1.73
[11] Gallegos, JA; Duarte-Mermoud, MA; Aguila-Camacho, N., On fractional extensions of Barbalat lemma, Syst Control Lett, 84, 7-12 (2015) · Zbl 1326.93063 · doi:10.1016/j.sysconle.2015.07.004
[12] Glöckle, WG; Nonnenmacher, TF, A fractional calculus approach to self-similar protein dynamics, Biophys J, 68, 1, 46-53 (1995) · doi:10.1016/S0006-3495(95)80157-8
[13] Gu, Y.; Wang, H.; Yu, Y., Stability and synchronization for Riemann-Liouville fractional-order time-delayed inertial neural networks, Neurocomputing, 340, 270-280 (2019) · doi:10.1016/j.neucom.2019.03.005
[14] He, B.; Zhou, H.; Chen, Y., Asymptotical stability of fractional order systems with time delay via an integral inequality, IET Control Theory Appl, 12, 12, 1748-1754 (2018) · doi:10.1049/iet-cta.2017.1144
[15] Heymans, N.; Podlubny, I., Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheol Acta, 45, 5, 765-771 (2006) · doi:10.1007/s00397-005-0043-5
[16] Hilfer, R., Applications of fractional calculus in physics (2000), Singapore: World Scientific, Singapore · Zbl 0998.26002 · doi:10.1142/3779
[17] Jin, XC; Lu, JG, Delay-dependent criteria for robust stability and stabilization of fractional-order time-varying delay systems, Eur J Control, 67, 100, 704 (2022) · Zbl 1497.93175 · doi:10.1016/j.ejcon.2022.100704
[18] Khalil, HK; Grizzle, JW, Nonlinear systems (2002), Upper Saddle River: Prentice Hall, Upper Saddle River · Zbl 1003.34002
[19] Kiskinov, H.; Zahariev, A., On fractional systems with Riemann-Liouville derivatives and distributed delays-choice of initial conditions, existence and uniqueness of the solutions, Eur Phys J Spec Top, 226, 16-18, 3473-3487 (2017) · doi:10.1140/epjst/e2018-00077-9
[20] Kuczma, M., An introduction to the theory of functional equations and inequalities (2009), Boston: Birkhäuser, Boston · Zbl 1221.39041 · doi:10.1007/978-3-7643-8749-5
[21] Liu, S.; Wu, X.; Zhou, XF, Asymptotical stability of Riemann-Liouville fractional nonlinear systems, Nonlinear Dyn, 86, 1, 65-71 (2016) · Zbl 1349.34013 · doi:10.1007/s11071-016-2872-4
[22] Liu, S.; Zhou, XF; Li, X., Asymptotical stability of Riemann-Liouville fractional singular systems with multiple time-varying delays, Appl Math Lett, 65, 32-39 (2017) · Zbl 1356.34078 · doi:10.1016/j.aml.2016.10.002
[23] Matlob, MA; Jamali, Y., The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: a primer, Crit Rev Biomed Eng (2019) · doi:10.1615/CritRevBiomedEng.2018028368
[24] Mohsenipour, R.; Liu, X., Robust D-stability test of LTI general fractional order control systems, IEEE CAA J Autom Sin, 7, 3, 853-864 (2020) · doi:10.1109/JAS.2020.1003159
[25] Pisanty, E.; Machado, GJ; Vicuña-Hernández, V., Knotting fractional-order knots with the polarization state of light, Nat Photonics, 13, 8, 569-574 (2019) · doi:10.1038/s41566-019-0450-2
[26] Podlubny, I., Fractional differential equations (1998), New York: Academic, New York
[27] Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, Fract Calc Appl Anal, 5, 4, 367-386 (2002) · Zbl 1042.26003
[28] Qian, D.; Li, C.; Agarwal, RP, Stability analysis of fractional differential system with Riemann-Liouville derivative, Math Comput Model, 52, 5-6, 862-874 (2010) · Zbl 1202.34020 · doi:10.1016/j.mcm.2010.05.016
[29] Tuan, HT; Trinh, H., A linearized stability theorem for nonlinear delay fractional differential equations, IEEE Trans Autom Control, 63, 9, 3180-3186 (2018) · Zbl 1423.34092 · doi:10.1109/TAC.2018.2791485
[30] Wang, F.; Yang, Y.; Hu, M., Asymptotic stability of delayed fractional-order neural networks with impulsive effects, Neurocomputing, 154, 239-244 (2015) · doi:10.1016/j.neucom.2014.11.068
[31] Xu, Y.; Dong, Y.; Huang, X., Properties tests and mathematical modeling of viscoelastic damper at low temperature with fractional order derivative, Front Mater, 6, 194 (2019) · doi:10.3389/fmats.2019.00194
[32] Xue, DY; Bai, L., Fractional calculus: numerical algorithms and implementations (2022), Beijing: Tsinghua University Press, Beijing
[33] Zhang, H.; Ye, M.; Ye, R., Synchronization stability of Riemann-Liouville fractional delay-coupled complex neural networks, Phys A, 508, 155-165 (2018) · Zbl 1514.34126 · doi:10.1016/j.physa.2018.05.060
[34] Zhu, Z.; Lu, JG, Robust stability and stabilization of hybrid fractional-order multi-dimensional systems with interval uncertainties: an LMI approach, Appl Math Comput, 401, 126, 075 (2021) · Zbl 1508.93233 · doi:10.1016/j.amc.2021.126075
[35] Zou, C.; Hu, X.; Dey, S., Nonlinear fractional-order estimator with guaranteed robustness and stability for Lithium-ion batteries, IEEE Trans Ind Electron, 65, 7, 5951-5961 (2017) · doi:10.1109/TIE.2017.2782691
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.