×

On the relation between Hurwitz stability of matrix polynomials and matrix-valued Stieltjes functions. (English) Zbl 1524.30015

Summary: In this paper, we elaborate on the relationship between the Hurwitz stability of matrix polynomials and matrix-valued Stieltjes functions. Our strategy is that, for a monic matrix polynomial, we associate a rational matrix-valued function with its even-odd split and then check the Hurwitz stability of the matrix polynomial by testing the Stieltjes property of the related rational matrix-valued function. On the basis of this relationship, we present matrix generalizations of a classical stability criterion by Gantmacher, Chebotarev theorem, Grommer theorem and some aspects of the modified Hermite-Biehler theorem. Our work is motivated by one of the authors’ recent stability studies linked with matricial Markov parameters.

MSC:

30C15 Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral)
15A54 Matrices over function rings in one or more variables
47A56 Functions whose values are linear operators (operator- and matrix-valued functions, etc., including analytic and meromorphic ones)
65F60 Numerical computation of matrix exponential and similar matrix functions
65F99 Numerical linear algebra
93D20 Asymptotic stability in control theory
Full Text: DOI

References:

[1] Shehata, A., Connections between Legendre with Hermite and Laguerre matrix polynomial, Gazi Univ. J. Sci., 28, 2, 221-230 (2015)
[2] Shehata, A.; Upadhyaya, L. M., Some relations satisfied by Hermite-Hermite matrix polynomials, Math. Bohem., 142, 2, 145-162 (2017) · Zbl 1424.33025
[3] Shehata, A.; Bhukya, R., Some properties of Hermite matrix polynomials, J. Int. Math. Virtual Inst., 5, 1-17 (2015) · Zbl 1453.33007
[4] Shehata, A.; Cekim, B., Some relations on Hermite-Hermite matrix polynomials, Univ. Politechn. Bucharest. Sci. Bull. Ser. A Appl. Math. Phys., 78, 1, 181-194 (2016) · Zbl 1399.33017
[5] Lerer, L.; Tismenetsky, M., The bezoutian and the eigenvalue-separation problem for matrix polynomials, Integral Equ. Oper. Theory, 5, 387-444 (1982) · Zbl 0504.47020
[6] Gohberg, I.; Lancaster, P.; Rodman, L., Matrix Polynomials (1982), Academic Press: Academic Press New York · Zbl 0482.15001
[7] Henrion, D.; Arzelier, D.; Peaucelle, D., Positive polynomial matrices and improved LMI robustness conditions, Automatica, 39, 1479-1485 (2003) · Zbl 1037.93027
[8] Lee, D. H.; Park, J. B.; Joo, Y. H., A less conservative LMI condition for robust \(\mathcal{D} \)-stability of polynomial matrix polytopes— a projection approach, IEEE Trans. Automat. Control, 56, 868-873 (2011) · Zbl 1368.93503
[9] Bitmead, R. R.; Anderson, B. D.O., The matrix Cauchy index: properties and applications, SIAM J. Appl. Math., 33, 655-672 (1977) · Zbl 0372.93022
[10] Galindo, R., Stabilisation of matrix polynomials, Internat. J. Control, 88, 1925-1932 (2015) · Zbl 1334.93142
[11] Hu, G., A stability criterion for the system of high-order neutral delay differential equations, Sib. Math. J., 61, 1140-1146 (2020) · Zbl 1465.34080
[12] Hu, G.; Hu, X., Stability criteria of matrix polynomials, Internat. J. Control, 92, 12, 2973-2978 (2019) · Zbl 1425.93251
[13] Mazko, A. G., Spectrum localization of regular matrix polynomials and functions, Electron. J. Linear Algebra, 20, 333-350 (2010) · Zbl 1207.15019
[14] Zhan, X.; Dyachenko, A., On generalization of classical Hurwitz stability criteria for matrix polynomials, J. Comput. Appl. Math., 383, Article 113113 pp. (2021) · Zbl 1460.34069
[15] Aguirre, B.; Ibarra, C.; Suárez, R., Sufficient algebraic conditions for stability of cones of polynomials, Systems Control Lett., 46, 4, 255-263 (2002) · Zbl 0994.93053
[16] Aguirre-Hernández, B.; Suárez, R., Algebraic test for the Hurwitz stability of a given segment of polynomials, Bol. Soc. Mat. Mex., 12, 2, 261-275 (2006) · Zbl 1141.93043
[17] Aguirre-Hernández, B.; Díaz-González, E. C.; Loredo-Villalobos, C. A.; García-Sosa, F. R., Properties of the set of Hadamardized Hurwitz polynomials, Math. Probl. Eng., 2015, Article 695279 pp. (2015) · Zbl 1394.93254
[18] Aguirre-Hernández, B.; Frías-Armenta, M. E.; Verduzco, F., Smooth trivial vector bundle structure of the space of Hurwitz polynomials, Automatica, 45, 12, 2864-2868 (2009) · Zbl 1206.55018
[19] Aguirre-Hernández, B.; Frías-Armenta, M. E.; Verduzco, F., On differential structures of polynomials spaces in control theory, J. Syst. Sci. Syst. Eng., 21, 3, 372-382 (2012)
[20] Gantmacher, F. R., (Hirsch, K. A., The Theory of Matrices, Vols. 1, 2 (1959), Chelsea Publishing Co.: Chelsea Publishing Co. New York) · Zbl 0085.01001
[21] Gesztesy, F.; Tsekanovskii, E., On matrix-valued Herglotz functions, Math. Nachr., 218, 61-138 (2000) · Zbl 0961.30027
[22] Krein, M. G.; Nudelman, A. A., The Markov moment and extremal problems, (Transl. Math. Monogr., vol. 50 (1977), Amer. Math. Soc. Providence) · Zbl 0361.42014
[23] Barkovsky, Yu, Lectures on the Routh-Hurwitz Problem (2008), arXiv:0802.1805
[24] Adm, M.; Garloff, J.; Tyaglov, M., Total nonnegativity of finite Hurwitz matrices and root location of polynomials, J. Math. Anal. Appl., 467, 148-170 (2018) · Zbl 1396.15028
[25] Čebotarev, N. G.; Meĭman, N. N., Tr. Mat. Inst. Steklova, 26, 331 (1949), Appendix by G.S. Barhin and A.N. Hovanskiĭ · Zbl 0041.19801
[26] Tschebotaröff, N., Über die Realität von nullstellen ganzer trenszendenten Funktionen, Math. Ann., 99, 660-686 (1928) · JFM 54.0351.02
[27] Holtz, O.; Tyaglov, M., Structured matrices, continued fractions, and root localization of polynomials, SIAM Rev., 54, 421-509 (2012) · Zbl 1261.26001
[28] Grommer, J., Ganze transzendente funktionen mit lauter reelen Nullstellen, J. Reine Angew. Math., 144, 114-166 (1914) · JFM 45.0650.02
[29] Akhiezer, N. I.; Krein, M. G., Some questions in the theory of moments, (Fleming, W.; Prill, D., Translations of Mathematical Monographs, vol. 2 (1962), American Mathematical Society: American Mathematical Society Providence, R.I.) · Zbl 0117.32702
[30] Kailath, T., Linear Systems (1980), Englewood Cliffs, Prentice-Hall: Englewood Cliffs, Prentice-Hall N.J · Zbl 0458.93025
[31] Kovalishina, I., Analytic theory of a class of interpolation problems, Math. USSR Izv., 22, 3, 419-463 (1984) · Zbl 0549.30026
[32] Fritzsche, B.; Kirstein, B.; Mädler, C., On a simultaneous approach to the even and odd truncated matricial hamburger moment problems, (Alpay, D.; Kirstein, B., Recent Advances in Inverse Scattering, Schur Analysis and Stochastic Processes. Recent Advances in Inverse Scattering, Schur Analysis and Stochastic Processes, Operator Theory: Advances and Applications, vol. 244 (2015), Birkhäuser: Birkhäuser Cham), 181-285 · Zbl 1369.47015
[33] Hu, Y. J.; Zhan, X. Z.; Chen, G. N., On maximum mass measures in truncated hamburger matrix moment problems and related interpolation problems, Linear Algebra Appl., 466, 429-456 (2015) · Zbl 1305.30018
[34] Chen, G. N.; Hu, Y. J., The truncated Hamburger matrix moment problems in the nondegenerate and degenerate cases, and matrix continued fractions, Linear Algebra Appl., 277, 199-236 (1998) · Zbl 0932.44005
[35] Dyukarev, Y. M.; Fritzsche, B.; Kirstein, B.; Mädler, C.; Thiele, H. C., On distinguished solutions of truncated matricial Hamburger moment problems, Complex Anal. Oper. Theory, 3, 759-834 (2009) · Zbl 1186.44006
[36] Mehrmann, V.; Watkins, D., Polynomial eigenvalue problems with Hamiltonian structure, Electron. Trans. Numer. Anal., 13, 106-118 (2002) · Zbl 1065.65054
[37] Lancaster, P., Lambda-Matrices and Vibrating Systems (1966), Pergamon Press · Zbl 0146.32003
[38] Duran, A. J., Markov theorem for orthogonal matrix polynomials, Canad. J. Math., 48, 1180-1195 (1996) · Zbl 0876.42014
[39] Anderson, B. D.O.; Jury, E., Generalized Bezoutian and Sylvester matrices in multivariable linear control, IEEE Trans. Automat. Control, 21, 551-556 (1976) · Zbl 0332.93032
[40] Dym, H.; Volok, D., Zero distribution of matrix polynomials, Linear Algebra Appl., 425, 714-738 (2007) · Zbl 1132.15023
[41] Lerer, L.; Rodman, L.; Tismenetsky, M., Inertia theorem for matrix polynomials, Linear Multilinear Algebra, 30, 157-182 (1991) · Zbl 0752.15010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.