×

Newton-Okounkov bodies of flag varieties and combinatorial mutations. (English) Zbl 1524.14109

The authors investigate the Newton-Okounkov bodies of certain projective varieties, denoted as \(X\). These bodies are convex bodies associated with a globally generated line bundle on \(X\) and with a higher rank valuation on the function field \(\mathbb{C}(X)\). Newton-Okounkov bodies, introduced by Okounkov and further developed by Lazarsfeld-Mustata and Kaveh-Khovanskii, play a crucial role in constructing toric degenerations of \(X\).
Utilizing the framework of iterated combinatorial mutations for lattice polytopes introduced by Akhtar-Coates-Galkin-Kasprzyk, the authors establish connections between specific Newton-Okounkov bodies of flag varieties. This includes string polytopes, Nakashima-Zelevinsky polytopes, and FFLV polytopes.

MSC:

14M25 Toric varieties, Newton polyhedra, Okounkov bodies
05E10 Combinatorial aspects of representation theory
13F60 Cluster algebras
14M15 Grassmannians, Schubert varieties, flag manifolds
52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)

References:

[1] Akhtar, M., Coates, T., Galkin, S., and Kasprzyk, A. M. “Minkowski polynomials and mutations.” SIGMA Symmetry Integrability Geom. Methods Appl.8 (2012): 094. · Zbl 1280.52014
[2] Anderson, D. “Okounkov bodies and toric degenerations.” Math. Ann.356, no. 3 (2013): 1183-202. · Zbl 1273.14104
[3] Ardila, F., Bliem, T., and Salazar, D. “Gelfand-Tsetlin polytopes and Feigin-Fourier-Littelmann-Vinberg polytopes as marked poset polytopes.” J. Combin. Theory Ser. A118, no. 8 (2011): 2454-62. · Zbl 1234.52009
[4] Berenstein, A., Fomin, S., and Zelevinsky, A. “Cluster algebras. III. Upper bounds and double Bruhat cells.” Duke Math. J.126, no. 1 (2005): 1-52. · Zbl 1135.16013
[5] Berenstein, A., and Zelevinsky, A. “Tensor product multiplicities, canonical bases and totally positive varieties.” Invent. Math.143, no. 1 (2001): 77-128. · Zbl 1061.17006
[6] Brion, M. “Lectures on the Geometry of Flag Varieties.” Topics in Cohomological Studies of Algebraic Varieties. 33-85. Birkhäuser, Basel: Trends Math., 2005. · Zbl 1487.14105
[7] Coates, T., Corti, A., Galkin, S., Golyshev, V., and Kasprzyk, A. M. “Mirror Symmetry and Fano Manifolds.” European Congress of Mathematics. 285-300. Zürich: Eur. Math. Soc., 2013. · Zbl 1364.14032
[8] Escobar, L., and Harada, M. “Wall-crossing for Newton-Okounkov bodies and the tropical Grassmannian, with Appendix by N. Ilten.” Int. Math. Res. Not. IMRN (in press). (2019).
[9] Fang, X., and Fourier, G. “Marked chain-order polytopes.” Eur. J. Combin.58 (2016): 267-82. · Zbl 1343.05163
[10] Fang, X., Fourier, G., Litza, J.-P., and Pegel, C. “A continuous family of marked poset polytopes.” SIAM J. Discrete Math.34, no. 1 (2020): 611-39. · Zbl 1445.52009
[11] Fang, X., Fourier, G., and Pegel, C. “The Minkowski property and reflexivity of marked poset polytopes.” Electron. J. Combin.27, no. 1 (2020): P1-27. · Zbl 1437.52011
[12] Feigin, E., Fourier, G., and Littelmann, P. “PBW filtration and bases for irreducible modules in type \({\text{A}}\_{\text{n}} \).” Transform. Groups16, no. 1 (2011): 71-89. · Zbl 1237.17011
[13] Feigin, E., Fourier, G., and Littelmann, P. “PBW filtration and bases for symplectic Lie algebras.” Int. Math. Res. Not. IMRN2011, no. 24 (2011): 5760-84. · Zbl 1233.17007
[14] Feigin, E., Fourier, G., and Littelmann, P. “Favourable modules: filtrations, polytopes, Newton-Okounkov bodies and flat degenerations.” Transform. Groups22, no. 2 (2017): 321-52. · Zbl 1461.14068
[15] Fock, V. V., and Goncharov, A. B. “Cluster X-Varieties, Amalgamation, and Poisson-Lie Groups.” Algebraic Geometry and Number Theory, Progr. Math., vol. 253. 27-68. Boston, MA: Birkhäuser Boston, 2006. · Zbl 1162.22014
[16] Fock, V. V., and Goncharov, A. B. “Cluster ensembles, quantization and the dilogarithm.” Ann. Sci. École Norm. Sup. Quatr. Sér.42, no. 6 (2009): 865-930. · Zbl 1180.53081
[17] Fomin, S., and Zelevinsky, A. “Cluster algebras. I. Foundations.” J. Amer. Math. Soc.15, no. 2 (2002): 497-529. · Zbl 1021.16017
[18] Fomin, S., and Zelevinsky, A. “Cluster algebras. IV. Coefficients.” Compositio Math.143, no. 1 (2007): 112-64. · Zbl 1127.16023
[19] Fujita, N. “Polyhedral realizations of crystal bases and convex-geometric Demazure operators.” Selecta Math. (N.S.)25 (2019): Paper No. 74. · Zbl 1428.05315
[20] Fujita, N., and Naito, S. “Newton-Okounkov convex bodies of Schubert varieties and polyhedral realizations of crystal bases.” Math. Z.285, no. 1-2 (2017): 325-52. · Zbl 1395.17026
[21] Fujita, N., and Oya, H. “A comparison of Newton-Okounkov polytopes of Schubert varieties.” J. Lond. Math. Soc. (2)96, no. 1 (2017): 201-27. · Zbl 1427.17024
[22] Fujita, N., and Oya, H. “Newton-Okounkov polytopes of Schubert varieties arising from cluster structures.” (2020): preprint arXiv:2002.09912v1.
[23] Gross, M., Hacking, P., Keel, S., and Kontsevich, M. “Canonical bases for cluster algebras.” J. Amer. Math. Soc.31, no. 2 (2018): 497-608. · Zbl 1446.13015
[24] Harada, M., and Kaveh, K. “Integrable systems, toric degenerations, and Okounkov bodies.” Invent. Math.202, no. 3 (2015): 927-85. · Zbl 1348.14122
[25] Hibi, T. “Dual polytopes of rational convex polytopes.” Combinatorica12, no. 2 (1992): 237-40. · Zbl 0758.52009
[26] Higashitani, A. “Two poset polytopes are mutation equivalent.” (2020): preprint arXiv:2002.01364v1.
[27] Ilten, N. “Mutations of Laurent polynomials and flat families with toric fibers.” SIGMA Symmetry Integrability Geom. Methods Appl.8 (2012): 047. · Zbl 1276.14073
[28] Jantzen, J. C. “Representations of Algebraic Groups.” Math. Surveys Monographs, vol. 107, 2nd ed. Providence, RI: Amer. Math. Soc., 2003. · Zbl 1034.20041
[29] Kashiwara, M. “On Crystal Bases.” Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., vol. 16. 155-97. Providence, RI: Amer. Math. Soc., 1995. · Zbl 0851.17014
[30] Kaveh, K. “Crystal bases and Newton-Okounkov bodies.” Duke Math. J.164, no. 13 (2015): 2461-506. · Zbl 1428.14083
[31] Kaveh, K., and Khovanskii, A. G. “Convex bodies and algebraic equations on affine varieties.” (2008): preprint arXiv:0804.4095v1, a short version with title Algebraic equations and convex bodies appeared in Perspectives in Analysis, Geometry, and Topology, Progr. Math., vol. 296. 263-82. New York: Birkhäuser/Springer, 2012. · Zbl 1316.52011
[32] Kaveh, K., and Khovanskii, A. G. “Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory.” Ann. Math.176, no. 2 (2012): 925-78. · Zbl 1270.14022
[33] Kiritchenko, V. “Newton-Okounkov polytopes of flag varieties.” Transform. Groups22, no. 2 (2017): 387-402. · Zbl 1396.14047
[34] Kumar, S. “Kac-Moody Groups, Their Flag Varieties and Representation Theory.” Progr. Math. vol. 204. Boston, MA: Birkhäuser Boston, Inc., 2002. · Zbl 1026.17030
[35] Lazarsfeld, R., and Mustata, M. “Convex bodies associated to linear series.” Ann. Sci. École Norm. Sup.42, no. 5 (2009): 783-835. · Zbl 1182.14004
[36] Littelmann, P. “Cones, crystals, and patterns.” Transform. Groups3, no. 2 (1998): 145-79. · Zbl 0908.17010
[37] Nakashima, T. “Polyhedral realizations of crystal bases for integrable highest weight modules.” J. Algebra219, no. 2 (1999): 571-97. · Zbl 0967.17011
[38] Nakashima, T., and Zelevinsky, A. “Polyhedral realizations of crystal bases for quantized Kac-Moody algebras.” Adv. Math.131, no. 1 (1997): 253-78. · Zbl 0897.17014
[39] Okounkov, A. “Brunn-Minkowski inequality for multiplicities.” Invent. Math.125, no. 3 (1996): 405-11. · Zbl 0893.52004
[40] Okounkov, A. “Multiplicities and Newton polytopes.” Kirillov’s Seminar on Representation Theory, Amer. Math. Soc. Transl. Ser. 2 vol. 181, Adv. Math. Sci. vol. 35. 231-44. Providence, RI: Amer. Math. Soc., 1998. · Zbl 0920.20032
[41] Okounkov, A. “Why Would Multiplicities Be Log-Concave?” The Orbit Method in Geometry and Physics. Progr. Math., vol. 213. 329-47. Boston: Birkhäuser Boston, 2003. · Zbl 1063.22024
[42] Portakal, I. “A Note on Deformations and Mutations of Fake Weighted Projective Planes.” Algebraic and Geometric Combinatorics on Lattice Polytopes. 354-66. World Scientific, 2019. · Zbl 1423.14222
[43] Qin, F. “Triangular bases in quantum cluster algebras and monoidal categorification conjectures.” Duke Math. J.166, no. 12 (2017): 2337-442. · Zbl 1454.13037
[44] Qin, F. “Dual canonical bases and quantum cluster algebras.” (2020): preprint arXiv:2003.13674v2.
[45] Rusinko, J. “Equivalence of mirror families constructed from toric degenerations of flag varieties.” Transform. Groups13, no. 1 (2008): 173-94. · Zbl 1189.14045
[46] Stanley, R. P. “Two Poset polytopes.” Discrete Comput. Geom.1 (1986): 9-23. · Zbl 0595.52008
[47] Steinert, C. “Reflexivity of Newton-Okounkov bodies of partial flag varieties.” (2019): preprint arXiv:1902.07105v1.
[48] Vinberg, E.On Some Canonical Bases of Representation Spaces of Simple Lie Algebras. Bielefeld: Conference Talk, 2005.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.