×

The integral trace form as a complete invariant for real \(S_n\) number fields. (English) Zbl 1524.11211

Summary: In this paper we show that the integral trace is a complete invariant for degree \(n, S_n\) real number fields that satisfy certain ramification bound. Among the fields that our results cover, there are those of square free different ideal; for such fields we find an explicit description of the isometry group of the integral trace.

MSC:

11R80 Totally real fields
11R29 Class numbers, class groups, discriminants
11R21 Other number fields

References:

[1] E. Bannai. Positive definite unimodular lattices with trivial automorphism groups, Mem. Amer. Math. Soc. 85 (1990), no. 429, DOI 10.1090/memo/0429, zbl 0702.11037, MR1004770 · Zbl 0702.11037 · doi:10.1090/memo/0429
[2] E. Bayer-Fluckiger, H. W. Lenstra. Forms in odd degree extensions and self-dual normal bases, Amer. J. Math. 112 (1990), 359-373, DOI 10.2307/2374746, zbl 0729.12006, MR1055648 · Zbl 0729.12006 · doi:10.2307/2374746
[3] E. Bayer-Fluckiger, R. Parimala, J. P. Serre. Hasse principle for \(G\)-trace forms, Izv. Math. 77 (2013) no. 3, 437-460, DOI 10.1070/IM2013v077n03ABEH002643, zbl 1368.11030, MR3098785, arxiv 1210.5765 · Zbl 1368.11030 · doi:10.1070/IM2013v077n03ABEH002643
[4] M. Bhargava. The density of discriminants of quintic rings and fields, Ann. of Math. (2) 172 (2004), no. 3, 1559-1591, DOI 10.4007/annals.2010.172.1559, zbl 1220.11139, MR2745272, arxiv 1005.5578 · Zbl 1220.11139 · doi:10.4007/annals.2010.172.1559
[5] M. Bhargava, P. Harron. The equidistribution of lattice shapes of ring of integers in cubic, quartic and quintic number fields, Compos. Math. 156 (2016), no. 6, 1111-1120, DOI 10.1112/S0010437X16007260, zbl 1347.11074, MR3518306, arxiv 1309.2025 · Zbl 1347.11074 · doi:10.1112/S0010437X16007260
[6] M. Bhargava, A. Shnidman. On the number of cubic orders of bounded discriminant having automorphism group \(C_3\), and related problems, Algebra Number Theory 8 (2014), no. 1, 53-88, DOI 10.2140/ant.2014.8.53, zbl 1298.11102, MR3207579, arxiv 1206.4746 · Zbl 1298.11102 · doi:10.2140/ant.2014.8.53
[7] J. Biermann. Gitter mit kleiner Automorphismegruppe in Geschlechtern von \(\mathbb{Z} \)-Gittern mit positiv-definiter quadratischer Form. Ph.D. thesis, Georg-August-Universit\"{a}t G\"{o}ttingen, 1981 · Zbl 0486.10018
[8] W. Bola\~nos. G. Mantilla-Soler. The trace form over cyclic number fields, Can. J. Math. 73 (2021), no. 4, 947-969, DOI: 10.4153/S0008414X20000255, zbl 1492.11147, MR4303491, arxiv 1904.10080 · Zbl 1492.11147
[9] P. E. Conner, R. Perlis. A survey of trace forms of algebraic number fields, Series in Pure Mathematics, 2. World Scientific, Singapore, 1984, zbl 0551.10017, MR0761569 · Zbl 0551.10017
[10] G. Cornelissen, B. de Smit, M. Marcolli, H. Smit. Characterization of global fields by dirichlet \(L\)-series, Res. Number Theory 5 (2019), 7, 15 pp., DOI 10.1007/s40993-018-0143-9, zbl 1460.11137, MR3887225 · Zbl 1460.11137 · doi:10.1007/s40993-018-0143-9
[11] B. Datskovsky and D. J. Wright. Density of discriminants of cubic extensions, J. Reine Angew. Math. 386 (1988), 116-138, DOI 10.1515/crll.1988.386.116, zbl 0632.12007, MR0936994 · Zbl 0632.12007 · doi:10.1515/crll.1988.386.116
[12] J. D. Dixon and B. Mortimer. Permutation groups, Graduate Texts in Mathematics,163. Springer, New York, 1996, DOI 10.1007/978-1-4612-0731-3, zbl 0951.20001, MR1409812 · Zbl 0951.20001 · doi:10.1007/978-1-4612-0731-3
[13] J. Ellenberg, A. Venkatesh. Statistics of number fields and function fields, Proceedings ICM 2010, zbl 1259.11106, MR2827801 · Zbl 1259.11106
[14] J. S. Ellenberg, A. Venkatesh. The number of extensions of a number field with fixed degree and bounded discriminant, Ann. of Math. (2) 163 (2006), no. 2, 723-741, DOI 10.4007/annals.2006.163.723, zbl 1099.11068, MR2199231, arxiv math/0309153 · Zbl 1099.11068 · doi:10.4007/annals.2006.163.723
[15] B. Erez, J. Morales, R. Perlis. Sur le genre de la form trace, Seminaire de Th\'{e}orie des Nombres de Bordeaux, 1987-1988, Talence, Exp. No. 18, 15 pp. zbl 0688.10020, MR0993116 · Zbl 0688.10020
[16] B. Hall. Lie groups, Lie algebras, and representations: an elementary introduction, 2nd ed. Graduate Texts in Mathematics, 222. Springer, Cham, 2015, DOI 10.1007/978-3-319-13467-3, zbl 1316.22001, MR3331229 · Zbl 1316.22001 · doi:10.1007/978-3-319-13467-3
[17] R. Harron. The shapes of pure cubic fields, Proc. Amer. Math. Soc. 145 (2017), no. 2, 509-524, DOI 10.1090/proc/13309, zbl 1415.11151, MR3577857, arxiv 1509.01627 · Zbl 1415.11151 · doi:10.1090/proc/13309
[18] P. A. Harron. The equidistribution of lattice shapes of rings of integers of cubic, quartic, and quintic number fields: an artist’s rendering, Ph.D. thesis, Princeton University, 2016, http://arks.princeton.edu/ark:/88435/dsp01ws859j05g, MR3487845 · Zbl 1347.11074
[19] H. Hasse. Arithmetische Theorie der kubischen Zahlk\"orper auf klassenk\"orpertheoretischer Grundlage, Math. Z. 31 (1930), 565-582, DOI 10.1007/BF01246435, zbl 56.0167.02, MR1545136 · JFM 56.0167.02 · doi:10.1007/BF01246435
[20] James E. Humphreys. Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9. Springer, New York-Berlin, 1972, DOI 10.1007/978-1-4612-6398-2, zbl 0254.17004, MR0323842 · Zbl 0254.17004 · doi:10.1007/978-1-4612-6398-2
[21] K. Iwasawa. On the ring of valuation vectors, Ann. of Math. (2) 57 (1953), 331-356, DOI 10.2307/1969863, zbl 0053.35603, MR0053970 · Zbl 0053.35603 · doi:10.2307/1969863
[22] J. Jones, D. Roberts. A data base of number fields, LMS J. Comput. Math.17 (2014), no. 1, 595-618, DOI 10.1112/S1461157014000424, zbl 1360.11121, MR3356048, arxiv 1404.0266 · Zbl 1360.11121 · doi:10.1112/S1461157014000424
[23] J. Kl\"uners. A counterexample to Malle’s conjecture on the asymptotics of discriminants, C. R. Math. Acad. Sci. Paris 340 (2005), no. 6, 411-414, MR2135320, arxiv math/0411486 · Zbl 1083.11069
[24] K. Komatsu. On the Adele ring of algebraic number fields, Kodai Math. Sem. Rep. 28 (1976), 78-84, DOI 10.2996/kmj/1138847384, zbl 0363.12016, MR0424760 · Zbl 0363.12016 · doi:10.2996/kmj/1138847384
[25] T. Kondo. Algebraic number fields with the discriminant equal to that of a quadratic number field, J. Math. Soc. Japan 47 (1995), no. 1, 31-36, DOI 10.2969/jmsj/04710031, zbl 0865.11074, MR1304187 · Zbl 0865.11074 · doi:10.2969/jmsj/04710031
[26] D. Maurer. The trace-form of an algebraic number field, J. Number Theory 5 (1973), 379-384, DOI 0.1016/0022-314X(73)90038-3, zbl 0275.12011, MR0325568 · Zbl 0275.12011 · doi:1016/0022-314X(73)90038-3
[27] R. J. Lemke, Oliver, F. Thorne. Upper bounds on number fields of given degree and bounded discriminant, Duke Math. J. 171 (2022), no. 15, 3077-3087, DOI 10.1215/00127094-2022-0046, zbl 07608258, MR4497223, arxiv 2005.14110 · Zbl 1504.11121 · doi:10.1215/00127094-2022-0046
[28] G. Mantilla-Soler. Integral trace forms associated to cubic extensions, Algebra Number Theory 4 (2010), no. 6, 681-699, DOI 10.2140/ant.2010.4.681, zbl 1201.11100, MR2728486, arxiv 1104.4598 · Zbl 1201.11100 · doi:10.2140/ant.2010.4.681
[29] G. Mantilla-Soler. On number fields with equivalent integral trace forms, Int. J. Number Theory 8 (2012), no. 7, 1569-1580, DOI 10.1142/S1793042112500807, zbl 1263.11099, MR2968942, arxiv 1104.4594 · Zbl 1263.11099 · doi:10.1142/S1793042112500807
[30] G. Mantilla-Soler. A space of weight one modular forms attached to totally real cubic number fields, Trends in number theory, 131-137. Contemp. Math., 649. Amer. Math. Soc., Providence, RI, 2015, DOI 10.1090/comm/649/13023, zbl 1370.11121, MR3415270, arxiv 1109.2251 · Zbl 1370.11121 · doi:10.1090/comm/649/13023
[31] G. Mantilla-Soler. The spinor genus of the integral trace, Trans. Amer. Math. Soc. 369 (2017), 1547-1577, DOI 10.1090/tran/6723, zbl 1410.11031, MR3581214, arxiv 1306.3998 · Zbl 1410.11031 · doi:10.1090/tran/6723
[32] G. Mantilla-Soler. Weak arithmetic equivalence, Canad. Math. Bull. 58 (2015), no. 1, 115-127, DOI 10.4153/CMB-2014-036-7, zbl 1312.11088, MR3303214, arxiv 1310.2990 · Zbl 1312.11088 · doi:10.4153/CMB-2014-036-7
[33] G. Mantilla-Soler. On the arithmetic determination of the trace, J. Algebra 444 (2015), 272-283, DOI 10.1016/j.jalgebra.2015.07.029, zbl 1326.11066, MR3406177, arxiv 1308.2187 · Zbl 1326.11066 · doi:10.1016/j.jalgebra.2015.07.029
[34] G. Mantilla-Soler, M. Monsurr\`o. The shape of \(\mathbb{Z}/\ell\mathbb{Z}\) number fields, Ramanujan J. 39 (2016), no. 3, 451-463, DOI 10.1007/s11139-015-9744-2, zbl 1414.11126, MR3472119, arxiv 1311.0387 · Zbl 1414.11126 · doi:10.1007/s11139-015-9744-2
[35] G. Mantilla-Soler. The \((\alpha, \beta)\)-ramification invariants of a number field, Math. Slovaca 71 (2021), no. 1, 251-263, DOI 10.1515/ms-2017-0464, zbl 1478.11127, MR4216816, arxiv 1906.04254 · Zbl 1478.11127 · doi:10.1515/ms-2017-0464
[36] J. Neukirch. Kennzeichnung der \(p\)-adischen und der endlichen algebraischen Zahlk\"orper, Invent. Math. 6 (1969), 296-314, DOI 10.1007/BF01425420, zbl 0192.40102, MR0244211 · Zbl 0192.40102 · doi:10.1007/BF01425420
[37] R. Perlis. On the equation \(\zeta_K=\zeta_{K'}\), J. Number Theory 9 (1977), 489-509, DOI 10.1016/0022-314X(77)90070-1, zbl 0389.12006, MR0447188 · Zbl 0389.12006 · doi:10.1016/0022-314X(77)90070-1
[38] D. Roberts. Density of cubic field discriminants, Math. Comp 70 (2001), no. 236, 1699-1705, DOI 10.1090/S0025-5718-00-01291-6, zbl 0985.11068, MR1836927, arxiv math/9904190 · Zbl 0985.11068 · doi:10.1090/S0025-5718-00-01291-6
[39] R. Schmidt. Subgroup lattices of groups, De Gruyter Expositions in Mathematics, 14. Walter de Gruyter, Berlin, 1994, zbl 0843.20003, MR1292462 · Zbl 0843.20003
[40] J. P. Serre. Local fields, Graduate Texts in Mathematics, 67. Springer, New York-Berlin, 1979, DOI 10.1007/978-1-4757-5673-9, zbl 0423.12016, MR0554237 · Zbl 0423.12016 · doi:10.1007/978-1-4757-5673-9
[41] J.-P. Serre. L’invariant de Witt de la forme Tr \((x^2)\), Comment. Math. Helv. 27 (1984), 651-676, DOI 10.1007/BF02566371, zbl 0565.12014, MR0780081 · Zbl 0565.12014 · doi:10.1007/BF02566371
[42] T. Taniguchi, F. Thorne. The secondary term in the counting function for cubic fields, Duke Math J. 162 (2013), no. 13, 2451-2508, DOI 10.1215/00127094-2371752, zbl 1294.11192, MR3127806, arxiv 1102.2914 · Zbl 1294.11192 · doi:10.1215/00127094-2371752
[43] D. Terr. The distribution of shapes of cubic orders, Ph.D. thesis, University of California, Berkeley. ProQuest LLC, Ann Arbor, MI, 1997, 137 pp., MR2697241
[44] K. Ushida. Isomorphisms of Galois groups. J. Math. Soc. Japan 28 (1976), no. 4, 617-620, DOI 10.2969/jmsj/02840617, zbl 0329.12013, MR0432593 · Zbl 0329.12013 · doi:10.2969/jmsj/02840617
[45] J. Wang. Secondary term of asymptotic distribution of \(S_3 \times A\) extensions over \(\mathbb{Q} \). Preprint, 2017, arxiv 1710.10693
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.