×

Forward dynamics and memory effect in a fractional order chemostat minimal model with non-monotonic growth. (English) Zbl 1523.92013

Summary: This paper aims to study the long-time dynamics of chemostat model with non-monotonic growth, subject to random bounded disturbances on the input flow. To be precise, we first prove existence and uniqueness of global positive solution of such model and then construct the compact forward absorbing and attracting sets, which are independent of the realizations of the input noise. Moreover, we prove the conditions for biomass extinction and species persistence. In particular, fractional operator has a noticeable effect, in such a way that it can delay the rate of extinction and persistence and amplitude of oscillator. Numerical simulations are presented to verify the theoretical results.

MSC:

92D25 Population dynamics (general)
33E12 Mittag-Leffler functions and generalizations
34A08 Fractional ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models
Full Text: DOI

References:

[1] N. A. M. S. S. Aris Jamaian, Dynamical analysis of fractional-order chemostat model, AIMS Biophysics, 8, 182-197 (2021)
[2] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, 2017. · Zbl 1347.26006
[3] N. H. Can, D. Kumar, T. V. Viet and A. T. Nguyen, On time fractional pseudoparabolic equations with non-local in time condition, Mathematical Methods in the Applied Sciences, (2021), Online first.
[4] T. R. J. A. Caraballo Colucci López-de-la-Cruz Rapaport, A way to model stochastic perturbations in population dynamics models with bounded realizations, Communications in Nonlinear Science and Numerical Simulation, 77, 239-257 (2019) · Zbl 1485.92080 · doi:10.1016/j.cnsns.2019.04.019
[5] T. R. J. A. Caraballo Colucci López-de-la-Cruz Rapaport, Study of the chemostat model with non-monotonic growth under random disturbances on the removal rate, Mathematical Biosciences and Engineering, 17, 7480-7501 (2020) · Zbl 1471.92215 · doi:10.3934/mbe.2020382
[6] T. M. J. J. Caraballo Garrido-Atienza López-de-la-Cruz, Dynamics of some stochastic chemostat models with multiplicative noise, Communications on Pure and Applied Analysis, 16, 1893-1914 (2017) · Zbl 1367.34056 · doi:10.3934/cpaa.2017092
[7] T. Caraballo and X. Han, Applied Nonautonomous and Random Dynamical Systems, Springer, 2016. · Zbl 1370.37001
[8] T. X. P. E. Caraballo Han Kloeden, Chemostats with random inputs and wall growth, Mathematical Methods in the Applied Sciences, 38, 3538-3550 (2015) · Zbl 1341.34053 · doi:10.1002/mma.3437
[9] T. J. A. J. C. Caraballo Langa Robinson, A stochastic pitchfork bifurcation in a reaction-diffusion equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457, 2041-2061 (2001) · Zbl 0996.60070 · doi:10.1098/rspa.2001.0819
[10] T. J. Caraballo López-de-la-Cruz, Bounded random fluctuations on the input flow in chemostat models with wall growth and non-monotonic kinetics, AIMS Mathematics, 6, 4025-4052 (2021) · Zbl 1525.34089 · doi:10.3934/math.2021239
[11] T. J. Caraballo López-de-la-Cruz, Survey on chemostat models with bounded random input flow, Mathematical Modelling and Control, 1, 52-78 (2021)
[12] T. Caraballo, J. López-de-la-Cruz and A. Rapaport, Study of the dynamics of two chemostats connected by Fickian diffusion with bounded random fluctuations, Stochastics and Dynamics, 22 (2022), Paper No. 2240002, 22 pp. · Zbl 1501.34041
[13] G. P. V. D. D’ans Kokotović Gottlieb, A nonlinear regulator problem for a model of biological waste treatment, IEEE Transactions on Automatic Control, 16, 341-347 (1971) · doi:10.1109/tac.1971.1099745
[14] K. Diethelm, The Analysis of Fractional Differential Equations, Springer Berlin Heidelberg, 2010. · Zbl 1215.34001
[15] K. N. J. A. D. Diethelm Ford Freed, Detailed error analysis for a fractional adams method, Numerical Algorithms, 36, 31-52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be
[16] J. K. B. Duan Lu Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations, Journal of Dynamics and Differential Equations, 16, 949-972 (2004) · Zbl 1065.60077 · doi:10.1007/s10884-004-7830-z
[17] M. Foondun, Remarks on a fractional-time stochastic equation, Proceedings of the American Mathematical Society, 149, 2235-2247 (2021) · Zbl 1467.60047 · doi:10.1090/proc/14644
[18] D. T. Gillespie, Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral, Physical Review E, 54, 2084-2091 (1996)
[19] S. Jorgensen, Fundamentals of Ecological Modelling, Elsevier, 2011.
[20] V. Kiryakova, Generalized fractional calculus operators with special functions, in Handbook of Fractional Calculus with Applications, Vol. 1, De Gruyter, (2019), 87-110.
[21] A. Kochubei and Y. Luchko (eds.), Handbook of Fractional Calculus with Applications: Basic Theory, De Gruyter, 2019. · Zbl 1410.26004
[22] L. D. N. H. S. D. N. H. Long Luc Tatar Baleanu Can, An inverse source problem for pseudo-parabolic equation with Caputo derivative, Journal of Applied Mathematics and Computing, 68, 739-765 (2022) · Zbl 1490.35542 · doi:10.1007/s12190-021-01546-5
[23] J. López-de-la-Cruz, Random and stochastic disturbances on the input flow in chemostat models with wall growth, Stochastic Analysis and Applications, 37, 668-698 (2019) · Zbl 1416.92182 · doi:10.1080/07362994.2019.1605911
[24] F. Mainardi, On some properties of the Mittag-Leffler function \(E_{\alpha}\left(-t^{\alpha}\right)\), completely monotone for \(t > 0\) with \(0 <\alpha<1\), Discrete and Continuous Dynamical Systems - B, 19, 2267-2278 (2014) · Zbl 1303.26007 · doi:10.3934/dcdsb.2014.19.2267
[25] J. Monod, La technique de culture continue: Théorie et applications, Annales de l’Institute Pasteur, 79, 390-410 (1950)
[26] H. T. H. C. R. Y. Nguyen Nguyen Wang Zhou, Initial value problem for fractional Volterra integro-differential equations with Caputo derivative, Discrete and Continuous Dynamical Systems - B, 26, 6483-6510 (2021) · Zbl 1478.35226 · doi:10.3934/dcdsb.2021030
[27] A. L. Novick Szilard, Experiments with the chemostat on spontaneous mutations of bacteria, Proceedings of the National Academy of Sciences, 36, 708-719 (1950)
[28] H. Pollard, The completely monotonic character of the Mittag-Leffler function \(E_{\alpha}(-x)\), Bull. Amer. Math. Soc., 54, 1115-1116 (1948) · Zbl 0033.35902 · doi:10.1090/S0002-9904-1948-09132-7
[29] J. W. M. L. Rivière, Microbial ecology of liquid waste treatment, in Advances in Microbial Ecology, Springer, Boston, MA, 1977, 215-259.
[30] E. M. C. Rurangwa Verdegem, Microorganisms in recirculating aquaculture systems and their management, Reviews in Aquaculture, 7, 117-130 (2015)
[31] H. L. P. Smith Waltman, The Theory of the Chemostat (1995) · Zbl 0860.92031 · doi:10.1017/CBO9780511530043
[32] T. N. D. N. H. N. H. Thach Kumar Luc Tuan, Existence and regularity results for stochastic fractional pseudo-parabolic equations driven by white noise, Discrete and Continuous Dynamical Systems - S, 15, 481-499 (2022) · Zbl 1492.60196 · doi:10.3934/dcdss.2021118
[33] T. N. N. H. Thach Tuan, Stochastic pseudo-parabolic equations with fractional derivative and fractional Brownian motion, Stochastic Analysis and Applications, 40, 328-351 (2022) · Zbl 1498.60144 · doi:10.1080/07362994.2021.1906274
[34] N. H. N. D. T. N. Tuan Phuong Thach, New well-posedness results for stochastic delay Rayleigh-Stokes equations, Discrete and Continuous Dynamical Systems - B, 28, 347-358 (2023) · Zbl 1509.35361 · doi:10.3934/dcdsb.2022079
[35] C. B. J. Zeng Liao Huang, Dynamics of the stochastic chemostat model with Monod-Haldane response function, Journal of Nonlinear Modeling and Analysis, 1, 335-354 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.