×

Free vibration analysis of rotating composite Timoshenko beams with bending-torsion couplings. (English) Zbl 1523.74045

Summary: The free vibration of rotating bending-torsional composite Timoshenko beams (CTBs) with arbitrary boundary conditions is analyzed. The composite material coupled rigidity, Coriolis effects and the separation of the cross-section’s mass and shear centers are considered and they will cause the bending-torsion coupled vibration of the beam. Based on the Hamilton’s principle, the governing partial differential matrix equation of motion of the beam are formulated with variable coefficients. Those equations containing variable coefficients are expressed in a special matrix form in terms of the flexural translation, rotation of cross section and torsional rotation of the beam. The differential transform matrix method (DTMM), which is an improved approach from the traditional differential transform method (DTM), is proposed to deal with the governing matrix equation with corresponding boundary conditions. The mode shapes and natural frequencies of the beam are obtained. Cantilevers are calculated as examples to verify the present theory and investigate the dynamic characteristics of the rotating CTB. The present results are consistent with those reported in the literature and those calculated from COMSOL. The influence of the composite material rigidity, rotation speed, hub radius and axial load on the natural frequencies and mode shapes of the beam are studied, while the frequency veering and mode shift phenomena are observed. Furthermore, the beam’s critical buckling loads corresponding to the axial load are found.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74E30 Composite and mixture properties
74S99 Numerical and other methods in solid mechanics

Software:

COMSOL
Full Text: DOI

References:

[1] Karamanli, A.; Aydogdu, M., On the vibration of size dependent rotating laminated composite and sandwich microbeams via a transverse shear-normal deformation theory, Compos Struct, 216, 290-300 (2019) · doi:10.1016/j.compstruct.2019.02.044
[2] Saravia, CM; Machado, SP; Cortínez, VH, Free vibration and dynamic stability of rotating thin-walled composite beams, Eur J Mech A-Solids, 30, 3, 432-441 (2011) · Zbl 1278.74080 · doi:10.1016/j.euromechsol.2010.12.015
[3] Durmaz S, Ozgumus OO, Kaya MO (2011) Free vibration analysis of rotating thin-walled composite beams. In: Paper presented at the Proceedings of 5th International Conference on Recent Advances in Space Technologies—RAST2011, 9-11 June 2011
[4] Khosravi, S.; Arvin, H.; Kiani, Y., Interactive thermal and inertial buckling of rotating temperature-dependent FG-CNT reinforced composite beams, Compos B Eng (2019) · doi:10.1016/j.compositesb.2019.107178
[5] Rafiee, M.; Nitzsche, F.; Labrosse, M., Dynamics, vibration and control of rotating composite beams and blades: a critical review, Thin Wall Struct, 119, 795-819 (2017) · doi:10.1016/j.tws.2017.06.018
[6] Fitzgerald, B.; Basu, B., Structural control of wind turbines with soil structure interaction included, Eng Struct, 111, 131-151 (2016) · doi:10.1016/j.engstruct.2015.12.019
[7] Seraj S (2016) Free vibration and dynamic instability analyses of doubly-tapered rotating laminated composite beams. Concordia University
[8] Zhao, X.; Chen, B.; Li, YH; Zhu, WD; Nkiegaing, FJ; Shao, YB, Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green’s functions, J Sound Vib (2020) · doi:10.1016/j.jsv.2019.115001
[9] Borković, A.; Kovačević, S.; Radenković, G.; Milovanović, S.; Majstorović, D., Rotation-free isogeometric dynamic analysis of an arbitrarily curved plane Bernoulli-Euler beam, Eng Struct, 181, 192-215 (2019) · doi:10.1016/j.engstruct.2018.12.003
[10] Ghayesh, MH, Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams, Appl Math Model, 59, 583-596 (2018) · Zbl 1480.74107 · doi:10.1016/j.apm.2018.02.017
[11] Ghayesh, MH, Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams, Compos Struct (2019) · doi:10.1016/j.compstruct.2019.110974
[12] Ghayesh, MH, Mechanics of viscoelastic functionally graded microcantilevers, Eur J Mech A-Solids, 73, 492-499 (2019) · Zbl 1406.74146 · doi:10.1016/j.euromechsol.2018.09.001
[13] Vinod, KG; Gopalakrishnan, S.; Ganguli, R., Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements, Int J Solids Struct, 44, 18-19, 5875-5893 (2007) · Zbl 1126.74019 · doi:10.1016/j.ijsolstr.2007.02.002
[14] Deepak, BP; Ganguli, R.; Gopalakrishnan, S., Dynamics of rotating composite beams: a comparative study between CNT reinforced polymer composite beams and laminated composite beams using spectral finite elements, Int J Mech Sci, 64, 1, 110-126 (2012) · doi:10.1016/j.ijmecsci.2012.07.009
[15] Shahba, A.; Attarnejad, R.; Marvi, MT; Hajilar, S., Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions, Compos B Eng, 42, 4, 801-808 (2011) · doi:10.1016/j.compositesb.2011.01.017
[16] Khosravi, S.; Arvin, H.; Kiani, Y., Vibration analysis of rotating composite beams reinforced with carbon nanotubes in thermal environment, Int J Mech Sci (2019) · doi:10.1016/j.ijmecsci.2019.105187
[17] Patel, BP; Ganapathi, M.; Touratier, M., Free vibrations analysis of laminated composite rotating beam using c shear flexible element, Def Sci J, 49, 1, 3-8 (1999) · doi:10.14429/dsj.49.3778
[18] Carrera, E.; Filippi, M.; Zappino, E., Free vibration analysis of rotating composite blades via Carrera Unified Formulation, Compos Struct, 106, 317-325 (2013) · doi:10.1016/j.compstruct.2013.05.055
[19] Aksencer, T.; Aydogdu, M., Flapwise vibration of rotating composite beams, Compos Struct, 134, 672-679 (2015) · doi:10.1016/j.compstruct.2015.08.130
[20] Santiuste, C.; Sánchez-Sáez, S.; Barbero, E., Dynamic analysis of bending-torsion coupled composite beams using the flexibility influence function method, Int J Mech Sci, 50, 12, 1611-1618 (2008) · Zbl 1166.74383 · doi:10.1016/j.ijmecsci.2008.10.005
[21] Banerjee, JR, Free vibration of axially loaded composite Timoshenko beams using the dynamic stiffness matrix method, Comput Struct, 69, 2, 197-208 (1998) · Zbl 0941.74021 · doi:10.1016/S0045-7949(98)00114-X
[22] Li J, Wang S, Li X, Kong X, Wu W (2015) Modeling the coupled bending-torsional vibrations of symmetric laminated composite beams. Arch Appl Mech 1-17
[23] Lee, U.; Jang, I., Spectral element model for axially loaded bending-shear-torsion coupled composite Timoshenko beams, Compos Struct, 92, 12, 2860-2870 (2010) · doi:10.1016/j.compstruct.2010.04.012
[24] Sari, MES; Al-Kouz, WG; Al-Waked, R., Bending-torsional-coupled vibrations and buckling characteristics of single and double composite Timoshenko beams, Adv Mech Eng (2019) · doi:10.1177/1687814019834452
[25] Han, H.; Liu, L.; Cao, D., Dynamic modeling for rotating composite Timoshenko beam and analysis on its bending-torsion coupled vibration, Appl Math Model, 78, 773-791 (2020) · Zbl 1481.74261 · doi:10.1016/j.apm.2019.09.056
[26] Inaudi, JA; Matusevich, AE, Domain-partition power series in vibration analysis of variable-cross-section rods, J Sound Vib, 329, 21, 4534-4549 (2010) · doi:10.1016/j.jsv.2010.04.028
[27] Zeng, H.; Bert, CW, Vibration analysis of a tapered bar by differential transformation, J Sound Vib, 242, 4, 737-739 (2001) · doi:10.1006/jsvi.2000.3372
[28] Çatal, S., Solution of free vibration equations of beam on elastic soil by using differential transform method, Appl Math Model, 32, 9, 1744-1757 (2008) · Zbl 1145.74355 · doi:10.1016/j.apm.2007.06.010
[29] Özdemir, Ö.; Kaya, MO, Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method, J Sound Vib, 289, 1-2, 413-420 (2006) · Zbl 1163.74512 · doi:10.1016/j.jsv.2005.01.055
[30] Kaya, MO; Ozdemir Ozgumus, O., Flexural-torsional-coupled vibration analysis of axially loaded closed-section composite Timoshenko beam by using DTM, J Sound Vib, 306, 3, 495-506 (2007) · doi:10.1016/j.jsv.2007.05.049
[31] Ozdemir, O.; Kaya, MO, Energy derivation and extension-flapwise bending vibration analysis of a rotating piezolaminated composite Timoshenko beam, Mech Adv Mater Struct, 21, 6, 477-489 (2014) · doi:10.1080/15376494.2012.697606
[32] Kaya, MO; Ozgumus, OO, Energy expressions and free vibration analysis of a rotating uniform timoshenko beam featuring bending-torsion coupling, J Vib Control, 16, 6, 915-934 (2010) · Zbl 1269.74093 · doi:10.1177/1077546309104876
[33] Abazari, R., Solution of Riccati types matrix differential equations using matrix differential transform method, J Appl Math Inform, 27, 5-6, 1133-1143 (2009)
[34] Abazari, R.; Kılıcman, A., Solution of second-order IVP and BVP of matrix differential models using matrix DTM, Abstr App Anal, 2012, 1-11 (2012) · Zbl 1242.65268 · doi:10.1155/2012/738346
[35] Hodges DH, Dowell EH (1974) Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. NASA
[36] Choi, S-C; Park, J-S; Kim, J-H, Active damping of rotating composite thin-walled beams using MFC actuators and PVDF sensors, Compos Struct, 76, 4, 362-374 (2006) · doi:10.1016/j.compstruct.2005.05.010
[37] Ghayesh, MH, Stability and bifurcations of an axially moving beam with an intermediate spring support, Nonlinear Dyn, 69, 1-2, 193-210 (2011) · doi:10.1007/s11071-011-0257-2
[38] Ozgumus, OO; Kaya, MO, Energy expressions and free vibration analysis of a rotating double tapered Timoshenko beam featuring bending-torsion coupling, Int J Eng Sci, 45, 2, 562-586 (2007) · Zbl 1213.74193 · doi:10.1016/j.ijengsci.2007.04.005
[39] Balkaya, M.; Kaya, MO; Sağlamer, A., Analysis of the vibration of an elastic beam supported on elastic soil using the differential transform method, Arch Appl Mech, 79, 2, 135-146 (2008) · Zbl 1177.74179 · doi:10.1007/s00419-008-0214-9
[40] Banerjee, JR; Williams, FW, Coupled bending-torsional dynamic stiffness matrix of an axially loaded Timoshenko beam element, Int J Solids Struct, 31, 6, 749-762 (1994) · Zbl 0810.73022 · doi:10.1016/0020-7683(94)90075-2
[41] Banerjee, JR, Explicit modal analysis of an axially loaded Timoshenko beam with bending-torsion coupling, J Appl Mech, 67, 2, 307-313 (2000) · Zbl 1110.74330 · doi:10.1115/1.1303984
[42] Li, J.; Shen, R.; Hua, H.; Jin, X., Bending-torsional coupled dynamic response of axially loaded composite Timosenko thin-walled beam with closed cross-section, Compos Struct, 64, 1, 23-35 (2004) · doi:10.1016/S0263-8223(03)00210-1
[43] Ozdemir Ozgumus, O.; Kaya, MO, Vibration analysis of a rotating tapered Timoshenko beam using DTM, Meccanica, 45, 1, 33-42 (2009) · Zbl 1184.74028 · doi:10.1007/s11012-009-9221-3
[44] Liu, L.; Cao, D.; Tan, X., Studies on global analytical mode for a three-axis attitude stabilized spacecraft by using the Rayleigh-Ritz method, Arch Appl Mech, 86, 12, 1927-1946 (2016) · doi:10.1007/s00419-016-1155-3
[45] Surace, G.; Anghel, V.; Mares, C., Coupled bending-bending-torsion vibration analysis of rotating pretwisted blades: an integral formulation and numerical examples, J Sound Vib, 206, 4, 473-486 (1997) · doi:10.1006/jsvi.1997.1092
[46] Gattulli, V.; Lepidi, M., Localization and veering in the dynamics of cable-stayed bridges, Comput Struct, 85, 21, 1661-1678 (2007) · doi:10.1016/j.compstruc.2007.02.016
[47] Gattulli, V.; Lepidi, M., Nonlinear interactions in the planar dynamics of cable-stayed beam, Int J Solids Struct, 40, 18, 4729-4748 (2003) · Zbl 1041.74514 · doi:10.1016/S0020-7683(03)00266-X
[48] Cao, DQ; Song, MT; Zhu, WD; Tucker, RW; Wang, CHT, Modeling and analysis of the in-plane vibration of a complex cable-stayed bridge, J Sound Vib, 331, 26, 5685-5714 (2012) · doi:10.1016/j.jsv.2012.07.010
[49] Vo, TP; Thai, H-T; Aydogdu, M., Free vibration of axially loaded composite beams using a four-unknown shear and normal deformation theory, Compos Struct, 178, 406-414 (2017) · doi:10.1016/j.compstruct.2017.07.022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.