×

An averaging principle for fast-slow-coupled neutral stochastic differential equations with time-varying delay. (English) Zbl 1523.60107

Summary: This paper examines the stochastic averaging principle of fast-slow-coupled neutral stochastic differential equations with time-varying delay. Due to the presence of neutral terms, traditional martingale methods and weak convergence techniques are not directly applicable. To overcome these difficulties, this paper gives a more subtle proof for tightness of the slow-varying process. To characterize the limit neutral diffusion system, more complicated computations and more subtle techniques are needed to deal with the neutral term. As a byproduct, this paper also establishes the equivalence between the weak solution of the neutral stochastic differential equation with time-varying delay and the solution of its corresponding the martingale problem.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34K40 Neutral functional-differential equations
34K26 Singular perturbations of functional-differential equations
Full Text: DOI

References:

[1] Ball, K.; Kurtz, TG; Popovic, L., Asymptotic analysis of multiscale approximations to reaction networks, Ann. Appl. Probab., 16, 4, 1925-1961 (2006) · Zbl 1118.92031 · doi:10.1214/105051606000000420
[2] Bao, J.; Yin, G.; Yuan, C., Two-time-scale stochastic partial differential equations driven by \(\alpha \)-stable noises: averaging principles, Bernoulli, 23, 1, 645-669 (2017) · Zbl 1360.60118 · doi:10.3150/14-BEJ677
[3] Billingsley, P., Convergence of probability measures (1999), New York: Wiley, New York · Zbl 0944.60003 · doi:10.1002/9780470316962
[4] Bogachev, VI, Measure Theory (2007), Berlin: Springer, Berlin · Zbl 1120.28001 · doi:10.1007/978-3-540-34514-5
[5] Chen, H.; Yuan, C., On the asymptotic behavior for neutral stochastic differential delay equations, IEEE Trans. Autom. Control, 64, 4, 1671-1678 (2018) · Zbl 1482.34170 · doi:10.1109/TAC.2018.2852607
[6] Chen, H.; Shi, P.; Lim, CC, Exponential stability for neutral stochastic Markov systems with time-varying delay and its applications, IEEE Trans. Cybern., 46, 6, 1350-1362 (2015) · doi:10.1109/TCYB.2015.2442274
[7] Freidlin, MI; Wentzell, AD, Random perturbations of dynamical systems (2012), Heidelberg: Springer, Heidelberg · Zbl 1267.60004 · doi:10.1007/978-3-642-25847-3
[8] Karatzas, I.; Shreve, SE, Brownian motion and stochastic calculus (1991), New York: Springer, New York · Zbl 0734.60060
[9] Khasminskii, RZ, On stochastic processes defined by differential equations with a small parameter, Theory Probab. Appl., 11, 2, 211-228 (1966) · Zbl 0168.16002 · doi:10.1137/1111018
[10] Khasminskii, RZ; Yin, G., Asymptotic series for singularly perturbed Kolmogorov-Fokker-Planck equations, SIAM J. Appl. Math., 56, 6, 1766-1793 (1996) · Zbl 0873.35015 · doi:10.1137/S0036139994270085
[11] Khasminskii, RZ; Yin, G., On transition densities of singularly perturbed diffusions with fast and slow components, SIAM J. Appl. Math., 56, 6, 1794-1819 (1996) · Zbl 0863.60076 · doi:10.1137/S0036139995282906
[12] Kushner, HJ, Approximation and weak convergence methods for random processes, with applications to stochastic systems theory (1984), Cambridge, MA: MIT Press, Cambridge, MA · Zbl 0551.60056
[13] Li, Y.; Wu, F.; Yin, G., Asymptotic behavior of gene expression with complete memory and two-time scales based on the chemical Langevin equations, Discret. Contin. Dyn. Syst. B, 24, 8, 4417-4443 (2019) · Zbl 1420.60089
[14] Luo, Q.; Mao, X.; Shen, Y., New criteria on exponential stability of neutral stochastic differential delay equations, Syst. Control Lett., 55, 10, 826-834 (2006) · Zbl 1100.93048 · doi:10.1016/j.sysconle.2006.04.005
[15] Mao, X., Exponential stability in mean square of neutral stochastic differential functional equations, Syst. Control Lett., 26, 4, 245-251 (1995) · Zbl 0877.93133 · doi:10.1016/0167-6911(95)00018-5
[16] Mao, X., Stochastic differential equations and applications (2007), Chichester: Horwood, Chichester · Zbl 1138.60005
[17] Mao, X.; Shen, Y.; Yuan, C., Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching, Stochastic Process. Appl., 118, 8, 1385-1406 (2008) · Zbl 1143.60041 · doi:10.1016/j.spa.2007.09.005
[18] Mazenc, F., Stability analysis of time-varying neutral time-delay systems, IEEE Trans. Autom. Control, 60, 2, 540-546 (2014) · Zbl 1360.34148 · doi:10.1109/TAC.2014.2342095
[19] Milošević, M., Highly nonlinear neutral stochastic differential equations with time-dependent delay and the Euler-Maruyama method, Math. Comput. Model., 54, 9-10, 2235-2251 (2011) · Zbl 1235.65009 · doi:10.1016/j.mcm.2011.05.033
[20] Ngoc, PHA; Trinh, H., Novel criteria for exponential stability of linear neutral time-varying differential systems, IEEE Trans. Autom. Control, 61, 6, 1590-1594 (2015) · Zbl 1359.34078 · doi:10.1109/TAC.2015.2478125
[21] Pardoux, E.; Veretennikov, Y., On the Poisson equation and diffusion approximation, I, Ann. Probab., 29, 3, 1061-1085 (2001) · Zbl 1029.60053 · doi:10.1214/aop/1015345596
[22] Pardoux, E.; Veretennikov, Y., On the Poisson equation and diffusion approximation, II, Ann. Probab., 31, 3, 1166-1192 (2003) · Zbl 1054.60064 · doi:10.1214/aop/1055425774
[23] Pardoux, E.; Veretennikov, Y., On the Poisson equation and diffusion approximation, III, Ann. Probab., 33, 3, 1111-1133 (2005) · Zbl 1071.60022 · doi:10.1214/009117905000000062
[24] Pavliotis, G.; Stuart, A., Multiscale methods: averaging and homogenization (2008), New York: Springer, New York · Zbl 1160.35006
[25] Revuz, D.; Yor, M., Continuous martingales and brownian motion (1999), Berlin: Springer, Berlin · Zbl 0917.60006 · doi:10.1007/978-3-662-06400-9
[26] Röckner, M.; Xie, L., Averaging principle and normal deviations for multiscale stochastic systems, Commun. Math. Phys., 383, 3, 1889-1937 (2021) · Zbl 1468.34089 · doi:10.1007/s00220-021-04069-z
[27] Röckner, M.; Xie, L., Diffusion approximation for fully coupled stochastic differential equations, Ann. Probab., 49, 3, 1205-1236 (2021) · Zbl 1487.60117 · doi:10.1214/20-AOP1475
[28] Skorokhod, AV; Hoppensteadt, FC; Salehi, HD, Random perturbation methods with applications in science and engineering (2002), New York: Springer, New York · Zbl 0998.37001 · doi:10.1007/b98905
[29] Veretennikov, AY, On an averaging principle for systems of stochastic differential equations, Math. USSR-Sbornik, 69, 1, 271-284 (1991) · Zbl 0724.60069 · doi:10.1070/SM1991v069n01ABEH001237
[30] Wu, F.; Yin, G., An averaging principle for two-time-scale stochastic functional differential equations, J. Differ. Equ., 269, 1, 1037-1077 (2020) · Zbl 1442.34127 · doi:10.1016/j.jde.2019.12.024
[31] Wu, F.; Yin, G., Fast-slow-coupled stochastic functional differential equations, J. Differ. Equ., 323, 1-37 (2022) · Zbl 1495.34111 · doi:10.1016/j.jde.2022.03.030
[32] Wu, F.; Tian, T.; Rawlings, JB; Yin, G., Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations, J. Chem. Phys., 144, 174112 (2016) · doi:10.1063/1.4948407
[33] Wu, M.; Cao, W.; Wu, F., Approximate properties of stochastic functional differential equations with singular perturbations, Discret. Contin. Dyn. Syst. B (2023) · Zbl 1519.34091 · doi:10.3934/dcdsb.2023037
[34] Xie, L.; Yang, L., Diffusion approximation for multi-scale stochastic reaction-diffusion equations, J. Differ. Equ., 300, 155-184 (2021) · Zbl 1469.60208 · doi:10.1016/j.jde.2021.07.039
[35] Xu, J.; Liu, J.; Liu, J.; Miao, Y., Strong averaging principle for two-time-scale stochastic McKean-Vlasov equations, Appl. Math. Optim., 84, suppl. 1, S837-S867 (2021) · Zbl 1476.60105 · doi:10.1007/s00245-021-09787-3
[36] Yin, G.; Zhang, H., Singularly perturbed Markov chains: limit results and applications, Ann. Appl. Probab., 17, 1, 207-229 (2007) · Zbl 1138.60331 · doi:10.1214/105051606000000682
[37] Yin, G.; Zhang, Q., Continuous-time markov chains and applications: a two-time-scale approach (2013), New York: Springer, New York · Zbl 1277.60127 · doi:10.1007/978-1-4614-4346-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.