×

Port-Hamiltonian dynamic mode decomposition. (English) Zbl 1523.37086

Summary: We present a novel physics-informed system identification method to construct a passive linear time-invariant system. In more detail, for a given quadratic energy functional, measurements of the input, state, and output of a system in the time domain, we find a realization that approximates the data well while guaranteeing that the energy functional satisfies a dissipation inequality. To this end, we use the framework of port-Hamiltonian (pH) systems and modify the dynamic mode decomposition, respectively, operator inference, to be feasible for continuous-time pH systems. We propose an iterative numerical method to solve the corresponding least-squares minimization problem. We construct an effective initialization of the algorithm by studying the least-squares problem in a weighted norm, for which we present the analytical minimum-norm solution. The efficiency of the proposed method is demonstrated with several numerical examples.

MSC:

37M99 Approximation methods and numerical treatment of dynamical systems
37N35 Dynamical systems in control
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
93B30 System identification
93C05 Linear systems in control theory

References:

[1] Altmann, R., Mehrmann, V., and Unger, B., Port-Hamiltonian formulations of poroelastic network models, Math. Comput. Model. Dyn. Syst., 27 (2021), pp. 429-452, doi:10.1080/13873954.2021.1975137. · Zbl 1491.74020
[2] Annoni, J., Gebraad, P., and Seiler, P., Wind farm flow modeling using an input-output reduced-order model, in Proceedings of the American Control Conference, IEEE, Boston, 2016, doi:10.1109/ACC.2016.7524964.
[3] Antoulas, A. C., Lefteriu, S., and Ionita, A. C., A tutorial introduction to the Loewner framework for model reduction, in Model Reduction and Approximation, Benner, P., Cohen, A., Ohlberger, M., and Willcox, K., SIAM, Philadelphia, 2017, pp. 335-376, doi:10.1137/1.9781611974829.ch8. · Zbl 1378.65010
[4] Baddoo, P. J., Herrmann, B., McKeon, B. J., Kutz, J. N., and Brunton, S. L., Physics-Informed Dynamic Mode Decomposition (piDMD), 2021, doi:10.1098/rspa.2022.0576.
[5] Beattie, C., Mehrmann, V., and Van Dooren, P., Robust port-Hamiltonian representations of passive systems, Automatica J. IFAC, 100 (2019), pp. 182-186, doi:10.1016/j.automatica.2018.11.013. · Zbl 1411.93056
[6] Beattie, C., Mehrmann, V., Xu, H., and Zwart, H., Port-Hamiltonian descriptor systems, Math. Control Signals Systems, 30 (2018), pp. 1-27, doi:10.1007/s00498-018-0223-3. · Zbl 1401.37070
[7] Benner, P., Goyal, P., Heiland, J., and Duff, I. Pontes, Operator inference and physics-informed learning of low-dimensional models for incompressible flows, Electron. Trans. Numer. Anal., 56 (2022), pp. 28-51, doi:10.1553/etna_vol56s28. · Zbl 1505.76072
[8] Benner, P., Goyal, P., and Van Dooren, P., Identification of port-Hamiltonian systems from frequency response data, Systems Control Lett., 143 (2020), 104741. doi:10.1016/j.sysconle.2020.104741. · Zbl 1451.93063
[9] Benner, P., Himpe, C., and Mitchell, T., On reduced input-output dynamic mode decomposition, Adv. Comput. Math., 44 (2018), pp. 1751-1768, doi:10.1007/s10444-018-9592-x. · Zbl 1405.93051
[10] Borja, P., Scherpen, J. M. A., and Fujimoto, K., Extended balancing of continuous LTI systems: A structure-preserving approach, IEEE Trans. Automat. Control, 2021, doi:10.1109/TAC.2021.3138645. · Zbl 1541.93144
[11] Breiten, T., Morandin, R., and Schulze, P., Error bounds for port-Hamiltonian model and controller reduction based on system balancing, Comput. Math. Appl., 116 (2022), pp. 100-115, doi:10.1016/j.camwa.2021.07.022. · Zbl 1524.93007
[12] Breiten, T. and Unger, B., Passivity preserving model reduction via spectral factorization, Automatica J. IFAC, 142 (2022), 110368. doi:10.1016/j.automatica.2022.110368. · Zbl 1494.93024
[13] Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D., Neural ordinary differential equations, in Proceedings of the 32nd Conference on Neural Information Processing Systems, NeurIPS, , 2018; also available online from https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf.
[14] Cherifi, K., Mehrmann, V., and Hariche, K., Numerical Methods to Compute a Minimal Realization of a Port-Hamiltonian System, http://arxiv.org/abs/1903.07042, 2019.
[15] Deng, Y.-B., Hu, X.-Y., and Zhang, L., Least squares solution of \(BXA^T=T\) over symmetric, skew-symmetric, and positive semidefinite \(X\), SIAM J. Matrix Anal. Appl., 25 (2003), pp. 486-494, doi:10.1137/S0895479802402491. · Zbl 1050.65037
[16] Gillis, N. and Sharma, P., On computing the distance to stability for matrices using linear dissipative Hamiltonian systems, Automatica J. IFAC, 85 (2017), pp. 113-121. · Zbl 1375.93110
[17] Gillis, N. and Sharma, P., A semi-analytical approach for the positive semidefinite procrustes problem, Linear Algebra Appl., 540 (2018), pp. 112-137, doi:10.1016/j.laa.2017.11.023. · Zbl 1380.65103
[18] Gugercin, S., Polyuga, R. V., Beattie, C., and van der Schaft, A., Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems, Automatica J. IFAC, 48 (2012), pp. 1963-1974, doi:10.1016/j.automatica.2012.05.052. · Zbl 1257.93021
[19] Gustavsen, B. and Semlyen, A., Rational approximation of frequency domain responses by vector fitting, IEEE Trans. Power Deliv., 14 (1999), pp. 1052-1061, doi:10.1109/61.772353.
[20] Heiland, J. and Unger, B., Identification of linear time-invariant systems with dynamic mode decomposition, Mathematics, 10 (2022), 418, doi:10.3390/math10030418.
[21] Higham, N. J., Matrix Nearness Problems and Applications, University of Manchester, 1988. · Zbl 0681.65029
[22] Hillebrecht, B. and Unger, B., Certified machine learning: A posteriori error estimation for physics-informed neural networks, in Proceedings of the International Joint Conference on Neural Networks, , IJCNN, 2022, pp. 1-8, doi:10.1109/IJCNN55064.2022.9892569.
[23] Hillebrecht, B. and Unger, B., Certified Machine Learning: Rigorous A Posteriori Error Bounds for PDE Defined PINNs, http://arxiv.org/abs/2210.03426, 2022.
[24] Jacob, B. and Zwart, H., Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, , Birkhäuser, Basel, 2012, doi:10.1007/978-3-0348-0399-1. · Zbl 1254.93002
[25] Juang, J.-N. and Pappa, R. S., An eigensystem realization algorithm for modal parameter identification and model reduction, J. Guidance Control Dynam., 8 (1985), pp. 620-627, doi:10.2514/3.20031. · Zbl 0589.93008
[26] Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., and Yang, L., Physics-informed machine learning, Nat. Rev. Phys., 3 (2021), pp. 422-440, doi:10.1038/s42254-021-00314-5.
[27] Kotyczka, P. and Lefèvre, L., Discrete-time port-Hamiltonian systems based on Gauss-Legendre collocation, IFAC-PapersOnLine, 51 (2018), pp. 125-130, doi:10.1016/j.ifacol.2018.06.035.
[28] Kutz, J., Brunton, S., Brunton, B., and Proctor, J., Dynamic Mode Decomposition, SIAM, Philadelphia, 2016, doi:10.1137/1.9781611974508. · Zbl 1334.65199
[29] Mayo, A. J. and Antoulas, A. C., A framework for the solution of the generalized realization problem, Linear Algebra Appl., 425 (2007), pp. 634-662, doi:10.1016/j.laa.2007.03.008. · Zbl 1118.93029
[30] Mehrmann, V. and Morandin, R., Structure-preserving discretization for port-Hamiltonian descriptor systems, in Proceedings of the 58th IEEE Conference on Decision and Control, CDC, Nice, , 2019, IEEE, pp. 6863-6868, doi:10.1109/CDC40024.2019.9030180.
[31] Mehrmann, V. and Unger, B., Control of Port-Hamiltonian Differential-Algebraic Systems and Applications, http://arxiv.org/abs/2201.06590, 2022.
[32] Moser, T. and Lohmann, B., A new Riemannian framework for efficient \(\mathcal{H}_2\) -optimal model reduction of port-Hamiltonian systems, in Proceedings of the 59th IEEE Conference on Decision and Control, CDC, , 2020, pp. 5043-5049, doi:10.1109/CDC42340.2020.9304134.
[33] Nesterov, Y., Introductory Lectures on Convex Optimization: A Basic Course, , Springer, New York, 2003, doi:10.1007/978-1-4419-8853-9. · Zbl 1086.90045
[34] Peherstorfer, B., Gugercin, S., and Willcox, K. E., Data-driven reduced model construction with time-domain Loewner models, SIAM J. Sci. Comput., 39 (2017), pp. 2152-2178, doi:10.1137/16M1094750. · Zbl 1448.65087
[35] Peherstorfer, B. and Willcox, K., Data-driven operator inference for nonintrusive projection-based model reduction, Comput. Methods Appl. Mech. Engrg., 306 (2016), pp. 196-215, doi:10.1016/j.cma.2016.03.025. · Zbl 1436.93062
[36] Polyuga, R. V. and van der Schaft, A., Structure-preserving moment matching for port-Hamiltonian systems: Arnoldi and Lanczos, IEEE Trans. Automat. Control, 56 (2011), pp. 1458-1462, doi:10.1109/TAC.2011.2128650. · Zbl 1368.93076
[37] Polyuga, R. V. and van der Schaft, A., Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems, Systems Control Lett., 61 (2012), pp. 412-421, doi:10.1016/j.sysconle.2011.12.008. · Zbl 1250.93019
[38] Proctor, J. L., Brunton, S. L., and Kutz, J. N., Dynamic mode decomposition with control, SIAM J. Appl. Dyn. Syst., 15 (2014), pp. 142-161, doi:10.1137/15M1013857. · Zbl 1334.65199
[39] Raissi, M., Perdikaris, P., and Karniadakis, G., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), pp. 686-707, doi:10.1016/j.jcp.2018.10.045. · Zbl 1415.68175
[40] Sato, K. and Sato, H., Structure-preserving \(H^2\) optimal model reduction based on the Riemannian trust-region method, IEEE Trans. Automat. Control, 63 (2018), pp. 505-512, doi:10.1109/TAC.2017.2723259. · Zbl 1390.93190
[41] Schmid, P. J., Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656 (2010), pp. 5-28, doi:10.1017/S0022112010001217. · Zbl 1197.76091
[42] Schulze, P. and Unger, B., Data-driven interpolation of dynamical systems with delay, Systems Control Lett., 97 (2016), pp. 125-131, doi:10.1016/j.sysconle.2016.09.007. · Zbl 1350.93027
[43] Schulze, P., Unger, B., Beattie, C., and Gugercin, S., Data-driven structured realization, Linear Algebra Appl., 537 (2018), pp. 250-286, doi:10.1016/j.laa.2017.09.030. · Zbl 1373.93087
[44] Schwerdtner, P., Port-Hamiltonian System Identification from Noisy Frequency Response Data, https://arxiv.org/abs/2106.11355, 2021.
[45] Schwerdtner, P. and Voigt, M., SOBMOR: Structured Optimization-Based Model Order Reduction, https://arxiv.org/abs/2011.07567, 2020. · Zbl 1514.93031
[46] Schwerdtner, P. and Voigt, M., Adaptive sampling for structure-preserving model order reduction of port-Hamiltonian systems, IFAC-PapersOnLine, 54 (2021), pp. 143-148, doi:10.1016/j.ifacol.2021.11.069.
[47] Sharma, H. and Kramer, B., Preserving Lagrangian Structure in Data-Driven Reduced-Order Modeling of Large-Scale Mechanical Systems, http://arxiv.org/abs/2203.06361, 2022.
[48] Sharma, H., Wang, Z., and Kramer, B., Hamiltonian operator inference: Physics-preserving learning of reduced-order models for canonical Hamiltonian systems, Phys. D, 432 (2022), 133122, doi:10.1016/j.physd.2021.133122. · Zbl 1487.65193
[49] Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L., and Kutz, J. N., On dynamic mode decomposition: Theory and applications, J. Comput. Dyn., 1 (2014), pp. 391-421, doi:10.3934/jcd.2014.1.391. · Zbl 1346.37064
[50] van der Schaft, A. and Jeltsema, D., Port-Hamiltonian systems theory: An introductory overview, Found. Trends Syst. Control, 1 (2014), pp. 173-378, doi:10.1561/2600000002. · Zbl 1496.93055
[51] Werner, S. W. R., Gosea, I. V., and Gugercin, S., Structured vector fitting framework for mechanical systems, IFAC-PapersOnLine, 55 (2022), pp. 163-168, doi:10.1016/j.ifacol.2022.09.089.
[52] Wolf, T., Lohmann, B., Eid, R., and Kotyczka, P., Passivity and structure preserving order reduction of linear port-Hamiltonian systems using Krylov subspaces, Eur. J. Control, 16 (2010), pp. 401-406, doi:10.3166/ejc.16.401-406. · Zbl 1207.93008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.