×

Simulating new CKO as a model of seismic sea waves via unified solver. (English) Zbl 1523.35100

MSC:

35C05 Solutions to PDEs in closed form
35C07 Traveling wave solutions
35A22 Transform methods (e.g., integral transforms) applied to PDEs
35G50 Systems of nonlinear higher-order PDEs
86A05 Hydrology, hydrography, oceanography
86A15 Seismology (including tsunami modeling), earthquakes

References:

[1] Abdelrahman, M. A. E., On the shallow water equations, Zeitschrift für Naturforschung, 72, 9, 873-879 (2017) · doi:10.1515/zna-2017-0146
[2] Abdelrahman, M. A. E.; AlKhidhr, H., Closed-form solutions to the conformable space-time fractional simplified MCH equation and time fractional Phi-4 equation, Results in Physics, 18, article 103294 (2020) · doi:10.1016/j.rinp.2020.103294
[3] Abdelrahman, M. A. E.; AlKhidhr, H., Fundamental solutions for the new coupled Konno-Oono equation in magnetic field, Results in Physics, 19, article 103445 (2020) · doi:10.1016/j.rinp.2020.103445
[4] Rezazadeh, H.; Tariq, H.; Eslami, M.; Mirzazadeh, M.; Zhou, Q., New exact solutions of nonlinear conformable time-fractional Phi-4 equation, Chinese Journal of Physics, 56, 6, 2805-2816 (2018) · Zbl 07822195 · doi:10.1016/j.cjph.2018.08.001
[5] Liu, K.; Yang, Z.; Wei, W.; Gao, B.; Xin, D.; Sun, C.; Gao, G.; Wu, G., Novel detection approach for thermal defects: study on its feasibility and application to vehicle cables, High Voltage, 1-10 (2022) · doi:10.1049/hve2.12258
[6] Li, J.; Chen, M.; Li, Z., Improved soil-structure interaction model considering time-lag effect, Computers and Geotechnics, 148, article 104835 (2022) · doi:10.1016/j.compgeo.2022.104835
[7] Li, J.; Zhou, L.; Li, S.; Lin, G.; Ding, Z., Soil-structure interaction analysis of nuclear power plant considering three-dimensional surface topographic irregularities based on automatic octree mesh, Engineering Structures, 275, article 115161 (2023) · doi:10.1016/j.engstruct.2022.115161
[8] Faraz, N.; Khan, Y.; Jafari, H.; Yildirim, A.; Madani, M., Fractional variational iteration method via modified Riemann-Liouville derivative, Journal of King Saud University—Science, 23, 4, 413-417 (2011) · doi:10.1016/j.jksus.2010.07.025
[9] Yang, X. F.; Deng, Z. C.; Wei, Y., A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Advances in Difference equations, 2015, 1 (2015) · Zbl 1422.35153 · doi:10.1186/s13662-015-0452-4
[10] Akinyemi, L.; Veeresha, P.; Senol, M.; Rezazadeh, H., An efficient technique for generalized conformable Pochhammer-Chree models of longitudinal wave propagation of elastic rod, Indian Journal de Physique, 96, 14, 4209-4218 (2022) · doi:10.1007/s12648-022-02324-0
[11] Younas, U.; Rezazadeh, H.; Ren, J.; Bilal, M., Propagation of diverse exact solitary wave solutions in separation phase of iron (Fe-Cr-X(X=Mo, Cu)) for the ternary alloys, International Journal of Modern Physics B, 36, 4, article 2250039 (2022) · doi:10.1142/S0217979222500394
[12] Rezazadeh, H., New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity, Optik, 167, 218-227 (2018) · doi:10.1016/j.ijleo.2018.04.026
[13] Wang, G.; Zhao, B.; Lan, R.; Liu, D.; Wu, B.; Li, Y.; Li, Q.; Zhou, H.; Liu, M.; Liu, W.; Liu, X., Experimental study on failure model of tailing dam overtopping under heavy rainfall, Lithosphere, 2022, Special 10 (2022) · doi:10.2113/2022/5922501
[14] Wang, G.; Zhao, B.; Wu, B.; Wang, M.; Liu, W.; Zhou, H.; Zhang, C.; Wang, Y.; Han, Y., Research on the macro-mesoscopic response mechanism of multisphere approximated heteromorphic tailing particles, Lithosphere, 2022, Special 10 (2022) · doi:10.2113/2022/1977890
[15] Wang, G.; Zhao, B.; Wu, B.; Zhang, C.; Liu, W., Intelligent prediction of slope stability based on visual exploratory data analysis of 77 in situ cases, International Journal of Mining Science and Technology (2022) · doi:10.1016/j.ijmst.2022.07.002
[16] Shakeel, M.; Mohyud-Din, S. T.; Iqbal, M. A., Modified extended exp-function method for a system of nonlinear partial differential equations defined by seismic sea waves, Pramana, 91, 2, 28 (2018) · doi:10.1007/s12043-018-1601-6
[17] Chunga, K.; Toulkeridis, T., First evidence of plaeo-tsunami deposits of a major historic event in Ecuador, Science of Tsunami Hazards, 33, 1, 55-69 (2014)
[18] Alam, Z.; Sun, L.; Zhang, C.; Samali, B., Influence of seismic orientation on the statistical distribution of nonlinear seismic response of the stiffness-eccentric structure, Structure, 39, 387-404 (2022) · doi:10.1016/j.istruc.2022.03.042
[19] Zhong, T.; Cheng, M.; Lu, S.; Dong, X.; Li, Y., RCEN: a deep-learning-based background noise suppression method for DAS-VSP records, IEEE Geoscience and Remote Sensing Letters, 19, 1-5 (2022) · doi:10.1109/LGRS.2021.3127637
[20] Zhang, Z.; Luo, C.; Zhao, Z., Application of probabilistic method in maximum tsunami height prediction considering stochastic seabed topography, Natural Hazards, 104, 3, 2511-2530 (2020) · doi:10.1007/s11069-020-04283-3
[21] Elhanafi, A., Prediction of regular wave loads on a fixed offshore oscillating water column-wave energy converter using CFD, Journal of Ocean Engineering and Science, 1, 4, 268-283 (2016) · doi:10.1016/j.joes.2016.08.001
[22] Chaturvedi, S. K., A case study of tsunami detection system and ocean wave imaging mechanism using radar, Journal of Ocean Engineering and Science, 4, 3, 203-210 (2019) · doi:10.1016/j.joes.2019.04.005
[23] Konno, K.; Oono, H., New coupled integrable dispersionless equations, Journal of the Physical Society of Japan, 63, 2, 377-378 (1994) · doi:10.1143/JPSJ.63.377
[24] Konno, K.; Kakuhata, H., Novel solitonic evolutions in a coupled integrable, dispersionless system, Journal of the Physical Society of Japan, 65, 3, 713-721 (1996) · Zbl 0938.35604 · doi:10.1143/JPSJ.65.713
[25] Souleymanou, A.; Kuetche, V. K.; Bouetou, T. B.; Kofane, T. C., Traveling wave-guide channels of a new coupled integrable dispersionless system, Communications in Theoretical Physics, 57, 1, 10-14 (2012) · Zbl 1247.35055 · doi:10.1088/0253-6102/57/1/03
[26] Khalique, C. M., Exact solutions and conservation laws of a coupled integrable dispersionless system, Univerzitet u Nišu, 26, 957-964 (2012) · Zbl 1289.35062
[27] Manafian, J.; Zamanpour, I.; Ranjbaran, A., On some new analytical solutions for new coupled Konno-Oono equation by the external trial equation method, Journal of Physics Communications, 2, 1, article 015023 (2018) · doi:10.1088/2399-6528/aaa3a5
[28] Bashar, A.; Mondal, G.; Khan, K.; Bekir, A., Traveling wave solutions of new coupled Konno-Oono equation, New Trends in Mathematical Science, 4, 2, 296-303 (2016) · doi:10.20852/ntmsci.2016218536
[29] Yel, G.; Baskonus, H. M.; Bulut, H., Novel archetypes of new coupled Konno-Oono equation by using sine-Gordon expansion method, Optical and Quantum Electronics, 49, 9, 1-10 (2017) · doi:10.1007/s11082-017-1127-z
[30] Mirhosseini-Alizamini, S. M.; Rezazadeh, H.; Srinivasa, K.; Bekir, A., New closed form solutions of the new coupled Konno-Oono equation using the new extended direct algebraic method, Pramana, 94, 1, 52 (2020) · doi:10.1007/s12043-020-1921-1
[31] Khan, K.; Akbar, M. A., Traveling wave solutions of some coupled nonlinear evolution equations, ISRN Mathematical Physics, 2013 (2013) · Zbl 1267.35165 · doi:10.1155/2013/685736
[32] Alomair, R. A.; Hassan, S. Z.; Abdelrahman, M. A. E., A new structure of solutions to the coupled nonlinear Maccari’s systems in plasma physics, AIMS Mathematics, 7, 5, 8588-8606 (2022) · doi:10.3934/math.2022479
[33] He, J. H., Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics, International Journal of Turbo and Jet Engines, 14, 1, 23-28 (1997) · doi:10.1515/TJJ.1997.14.1.23
[34] He, J. H., Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons and Fractals, 19, 4, 847-851 (2004) · Zbl 1135.35303 · doi:10.1016/S0960-0779(03)00265-0
[35] He, J. H., Some asymptotic methods for strongly nonlinear equations, International Journal of Modern Physics B, 20, 10, 1141-1199 (2006) · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[36] Weisstein, E. W., Concise Encyclopedia of Mathematics (2002), New York, NY, USA: CRC Press, New York, NY, USA · Zbl 1079.00009 · doi:10.1201/9781420035223
[37] Huang, S.; Lyu, Y.; Sha, H.; Xiu, L., Seismic performance assessment of unsaturated soil slope in different groundwater levels, Landslides, 18, 8, 2813-2833 (2021) · doi:10.1007/s10346-021-01674-w
[38] Huang, S.; Huang, M.; Lyu, Y., Seismic performance analysis of a wind turbine with a monopile foundation affected by sea ice based on a simple numerical method, Engineering Applications of Computational Fluid Mechanics, 15, 1, 1113-1133 (2021) · doi:10.1080/19942060.2021.1939790
[39] Cheng, Y.; Fu, L. Y., Nonlinear seismic inversion by physics-informed Caianiello convolutional neural networks for overpressure prediction of source rocks in the offshore Xihu depression, East China, Journal of Petroleum Science and Engineering, 215, article 110654 (2022) · doi:10.1016/j.petrol.2022.110654
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.