×

Optimal decay of the parabolic semigroup in stochastic homogenization for correlated coefficient fields. (English) Zbl 1523.35025

Summary: We study the large scale behavior of elliptic systems with stationary random coefficient that have only slowly decaying correlations. To this aim we analyze the so-called corrector equation, a degenerate elliptic equation posed in the probability space. In this contribution, we use a parabolic approach and optimally quantify the time decay of the semigroup. For the theoretical point of view, we prove an optimal decay estimate of the gradient and flux of the corrector when spatially averaged over a scale \(R\ge 1\). For the numerical point of view, our results provide convenient tools for the analysis of various numerical methods.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35J10 Schrödinger operator, Schrödinger equation
35R60 PDEs with randomness, stochastic partial differential equations
47D06 One-parameter semigroups and linear evolution equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)

References:

[1] Abdulle, A., Arjmand, D., Paganoni, E.: Analytical and numerical study of a modified cell problem for the numerical homogenization of multiscale random fields. arXiv preprint arXiv:2007.10828 (2020)
[2] Armstrong, S.; Bordas, A.; Mourrat, J-C, Quantitative stochastic homogenization and regularity theory of parabolic equations, Anal. PDE, 11, 8, 1945-2014 (2018) · Zbl 1388.60103 · doi:10.2140/apde.2018.11.1945
[3] Armstrong, S.; Kuusi, T.; Mourrat, J-C, Mesoscopic higher regularity and subadditivity in elliptic homogenization, Commun. Math. Phys., 347, 2, 315-361 (2016) · Zbl 1357.35025 · doi:10.1007/s00220-016-2663-2
[4] Armstrong, S.; Kuusi, T.; Mourrat, J-C, The additive structure of elliptic homogenization, Invent. Math., 208, 3, 999-1154 (2017) · Zbl 1377.35014 · doi:10.1007/s00222-016-0702-4
[5] Armstrong, S.; Kuusi, T.; Mourrat, J-C, Quantitative Stochastic Homogenization and Large-Scale Regularity (2019), Berlin: Springer, Berlin · Zbl 1482.60001
[6] Armstrong, S., Smart, C.K.: Quantitative stochastic homogenization of convex integral functionals. In: Annales scientifiques de l’Ecole normale supérieure, vol. 49, pp. 423-481. Societe Mathematique de France (2016) · Zbl 1344.49014
[7] Armstrong, SN; Mourrat, J-C, Lipschitz regularity for elliptic equations with random coefficients, Arch. Ration. Mech. Anal., 219, 1, 255-348 (2016) · Zbl 1344.35048 · doi:10.1007/s00205-015-0908-4
[8] Avellaneda, M.; Lin, FH, Lp bounds on singular integrals in homogenization, Commun. Pure Appl. Math., 44, 8-9, 897-910 (1991) · Zbl 0761.42008 · doi:10.1002/cpa.3160440805
[9] Bella, P.; Chiarini, A.; Fehrman, B., A Liouville theorem for stationary and ergodic ensembles of parabolic systems, Probab. Theory Relat. Fields, 173, 3-4, 759-812 (2019) · Zbl 1408.35069 · doi:10.1007/s00440-018-0843-z
[10] Duerinckx, M., Gloria, A.: Multiscale functional inequalities in probability: concentration properties. Lat. Am. J. Probab. Math. Stat. ALEA (2019) (in press) · Zbl 1456.60053
[11] Duerinckx, M.; Gloria, A., Multiscale functional inequalities in probability: constructive approach, Ann. Henri Lebesgue, 3, 825-872 (2020) · Zbl 1472.60086 · doi:10.5802/ahl.47
[12] Fischer, J.; Otto, F., Sublinear growth of the corrector in stochastic homogenization: optimal stochastic estimates for slowly decaying correlations, Stoch. Partial Differ. Equ. Anal. Comput., 5, 2, 220-255 (2017) · Zbl 1387.35029
[13] Friedman, A., Partial Differential Equations of Parabolic Type (2008), Mineola: Courier Dover Publications, Mineola
[14] Gloria, A.; Habibi, Z., Reduction in the resonance error in numerical homogenization II: correctors and extrapolation, Found. Comput. Math., 16, 1, 217-296 (2016) · Zbl 1335.65086 · doi:10.1007/s10208-015-9246-z
[15] Gloria, A.; Neukamm, S.; Otto, F., An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations, ESAIM: Math. Model. Numer. Anal., 48, 2, 325-346 (2014) · Zbl 1307.35029 · doi:10.1051/m2an/2013110
[16] Gloria, A.; Neukamm, S.; Otto, F., Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics, Invent. Math., 199, 2, 455-515 (2015) · Zbl 1314.39020 · doi:10.1007/s00222-014-0518-z
[17] Gloria, A.; Neukamm, S.; Otto, F., Quantitative estimates in stochastic homogenization for correlated coefficient fields, Anal. PDE, 14, 2497-2537 (2020) · Zbl 1485.35156 · doi:10.2140/apde.2021.14.2497
[18] Gloria, A.; Neukamm, S.; Otto, F., A regularity theory for random elliptic operators, Milan J. Math., 88, 1, 99-170 (2020) · Zbl 1440.35064 · doi:10.1007/s00032-020-00309-4
[19] Gloria, A.; Nolen, J., A quantitative central limit theorem for the effective conductance on the discrete torus, Commun. Pure Appl. Math., 69, 12, 2304-2348 (2016) · Zbl 1383.82025 · doi:10.1002/cpa.21614
[20] Gloria, A.; Otto, F., An optimal error estimate in stochastic homogenization of discrete elliptic equations, Ann. Appl. Probab., 22, 1-28 (2012) · Zbl 1387.35031 · doi:10.1214/10-AAP745
[21] Gloria, A., Otto, F.: The corrector in stochastic homogenization: optimal rates, stochastic integrability, and fluctuations. arXiv preprint arXiv:1510.08290 (2015)
[22] Gloria, A.; Otto, F., Quantitative results on the corrector equation in stochastic homogenization, J. Eur. Math. Soc., 19, 11, 3489-3548 (2017) · Zbl 1387.35032 · doi:10.4171/JEMS/745
[23] Gloria, A.; Otto, F., An optimal variance estimate in stochastic homogenization of discrete elliptic equations, Ann. Probab., 39, 3, 779-856 (2011) · Zbl 1215.35025 · doi:10.1214/10-AOP571
[24] Josien, M., Otto, F.: The annealed Calderon-Zygmund estimate as convenient tool in quantitative stochastic homogenization. arXiv preprint arXiv:2005.08811 (2020) · Zbl 1494.35022
[25] Kozlov, S.M.: Averaging of random operators. Mat. Sb. 151(2), 188-202 (1979) · Zbl 0415.60059
[26] Lu, J., Otto, F., Wang, L.: Optimal artificial boundary conditions based on second-order correctors for three dimensional random elliptic media. arXiv preprint arXiv:2109.01616 (2021)
[27] Papanicolaou, G.C., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients. In: Colloquia Mathematica Societatis, Janos Bolyai, vol. 27, pp. 853-873 (1979) · Zbl 0499.60059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.