×

On the uniqueness of limit cycles in second-order oscillators. (English) Zbl 1523.34030

The authors provide interesting results regarding the existence and uniqueness of limit cycles for a class of second order differential equations of the form, \[ \dot{x}=y, \qquad \dot{y}=-|x|^m \operatorname{sgn}(x)-f(x,y)y, \tag{1} \] where \(1 \leq m < +\infty\) and \(f(x, y)\) is continuous in \(\mathbb{R}^2\). It is important to notice that system (1) contains the well known class of systems called van der Pol-Rayleigh oscillators. The paper possesses four main results concerning system (1): Theorem 1 states conditions for the uniqueness of a limit cycle; Theorem 2 states necessary conditions for the existence of a limit cycle; Theorem 3 provides a criterion for the existence of a limit cycle and; Theorem 4 provides a criterion for the non-existence of limit cycles. Using these four results the authors prove the uniqueness of limit cycles for three classes of the van der Pol-Rayleigh oscillators and they study their global dynamics in the Poincaré disc as well. Moreover, an interesting comparison between Theorem 1 and some known results is done. The authors show that a result proved by J. L. Massera [Boll. Unione Mat. Ital., III. Ser. 9, 367–369 (1954; Zbl 0057.07004)] can be obtained directly from Theorem 1. On the other hand they point out that Theorem 1 is weaker than a conjecture proposed by A. de Castro [Boll. Unione Mat. Ital., III. Ser. 9, 280–282 (1954; Zbl 0056.08301)].

MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34D23 Global stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Álvarez, M. J.; Gasull, A., Momodromy and stability for nilpotent critical points, Int. J. Bifurc. Chaos, 15, 1253-1265 (2005) · Zbl 1088.34021
[2] Amelikin, B. B.; Lukashivich, H. A.; Sadovski, A. P., Nonlinear Oscillations in Second Order Systems (1982), BGY Lenin B.I. Press: BGY Lenin B.I. Press Minsk, (in Russian) · Zbl 0526.70024
[3] Bikdash, M.; Balachandran, B.; Nayfeh, A. H., Melnikov analysis for a ship with a general Roll-damping model, Nonlinear Dyn., 6, 101-124 (1994)
[4] De Castro, A., Un teorema di confronto per l’equazone differenziale delle oscillazioni di rilassamento, Boll. Unione Mat. Ital., 9, 280-282 (1954) · Zbl 0056.08301
[5] Cima, A.; Gasull, A.; Mañosas, F., Limit cycles for vector fields with homogeneous components, Appl. Math., 24, 281-287 (1997) · Zbl 0880.34032
[6] de Pina Filho, A. C.; Dutra, M. S., Application of hybrid van der Pol-Rayleigh oscillators for modeling of a bipedal robot, Mech. Soli. Braz., 1, 209-221 (2009)
[7] Dumortier, F.; Llibre, J.; Artés, J. C., Qualitative Theory of Planar Differential Systems (2006), Springer-Verlag: Springer-Verlag New York, UniversiText · Zbl 1110.34002
[8] Erlicher, S.; Trovato, A.; Argoul, P., Modelling the lateral pedestrian force on a rigid floor by a self-sustained oscillator, Mech. Syst. Signal Process., 24, 1579-1604 (2010)
[9] Erlicher, S.; Trovato, A.; Argoul, P., A modified hybrid Van der Pol/Rayleigh model for the lateral pedestrain force on a periodically moving floor, Mech. Syst. Signal Process., 41, 481-501 (2013)
[10] Field, M. J., Equivariant dynamical systems, Trans. Am. Math. Soc., 259, 185-205 (1980) · Zbl 0447.58029
[11] Fuchs, A., Dynamical systems in one and two dimensions: a geometrical approach, (Huys, Raoul; Jirsa, K., Nonlinear Dynamics in Human Behavior (2010), Springer-Verlag: Springer-Verlag Berlin, Heidelberg)
[12] Frommer, M., Die intergralkurven einer gewöhnlichen differentialgleichung erster ordnung in der umgebung rationaler unbestimmtheitsstellen, Math. Ann., 99, 222-272 (1928) · JFM 54.0453.03
[13] Gasull, A., Some open problems in low dimensional dynamical systems, SeMA J., 78, 233-269 (2021) · Zbl 1487.37024
[14] Gasull, A.; Giacomini, H., Upper bounds for the number of limit cycles through linear differential equations, Pac. J. Math., 226, 277-296 (2006) · Zbl 1135.34027
[15] Giacomini, H.; Grau, M., Transversal conics and the existence of limit cycles, J. Math. Anal. Appl., 428, 1, 563-586 (2015) · Zbl 1330.34050
[16] Hale, J. K., Ordinary Differential Equations (1980), Robert E. Krieger Publishing Company: Robert E. Krieger Publishing Company New York · Zbl 0433.34003
[17] Khalil, H. K., Nonlinear Systems (1992), MacMillan: MacMillan New York · Zbl 0969.34001
[18] Liu, Y.; Li, J.; Huang, W., Planar Dynamical Systems: Selected Classical Problems (2014), Science Press: Science Press Beijing · Zbl 1319.34004
[19] Llibre, J.; Ponce, E.; Valls, C., Uniqueness and non-uniqueness of limit cycles for piecewise linear differential systems with three zones and no symmetry, J. Nonlinear Sci., 25, 861-887 (2015) · Zbl 1331.34042
[20] Llibre, J.; Ponce, E.; Valls, C., Two limit cycles in Liénard piecewise linear differential systems, J. Nonlinear Sci., 29, 1499-1522 (2019) · Zbl 1481.34040
[21] Massera, J. L., Sur un Théorème de G. Sansone sur l’equation de Liénard, Boll. Unione Mat. Ital., 9, 367-369 (1954) · Zbl 0057.07004
[22] Nayfeh, A. H.; Balachandran, B., Applied Nonlinear Dynamics (2004), Wiley: Wiley Weinheim
[23] Petrovitsch, M., Sur une manière d’étendre le théorème de la moyence aux équations différentielles du premier ordre, Math. Ann., 54, 417-436 (1901) · JFM 32.0336.01
[24] Sansone, G., Sopra lequazione di Liénard delle oscillazioni di rilassamento, Ann. Mat. Pura Appl., 28, 153-181 (1949), (in Italian) · Zbl 0037.19001
[25] Tang, Y.; Zhang, W., Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17, 1407-1426 (2004) · Zbl 1089.34028
[26] Wulff, C.; Lamb, J. S.W.; Melbourne, I., Bifurcation from relative periodic solutions, Ergod. Theory Dyn. Syst., 21, 605-635 (2001) · Zbl 0986.37044
[27] Xiao, D.; Zhang, Z., On the uniqueness and nonexistence of limit cycles for predator-prey systems, Nonlinearity, 16, 1-17 (2003)
[28] Ye, Y., Theory of Limit Cycles, Transl. Math. Monogr. (1986), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0588.34022
[29] Zeng, X.; Zhang, Z.; Gao, S., On the uniqueness of the limit cycle of the generalized Liénard equation, Bull. Lond. Math. Soc., 26, 213-247 (1994) · Zbl 0805.34031
[30] Zhang, Z.; Ding, T.; Huang, W.; Dong, Z., Qualitative Theory of Differential Equations, Transl. Math. Monogr. (1992), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0779.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.