×

Some estimates for the Cauchy transform in higher dimensions. (English) Zbl 1523.30063

Summary: We give estimates of the Cauchy transform in Lebesgue integral norms in Clifford analysis framework which are the generalizations of Cauchy transform in complex plane, and mainly establish the \((L^p, L^q)\)-boundedness of the Clifford Cauchy transform in Euclidean space \(\mathbb{R}^{n+1}\) using the Clifford algebra and the Hardy-Littlewood maximal function. Furthermore, we prove Hedberg estimate and Kolmogorov’s inequality related to Clifford Cauchy transform. As applications, some respective results in complex plane are directly obtained. Based on the properties of the Clifford Cauchy transform and the principle of uniform boundedness, we solve existence of solutions to integral equations with Cauchy kernel in quaternionic analysis.

MSC:

30G35 Functions of hypercomplex variables and generalized variables
30E20 Integration, integrals of Cauchy type, integral representations of analytic functions in the complex plane
Full Text: DOI

References:

[1] Adams, DR, A sharp inequality of J. Moser for higher order derivatives, Ann. Math., 128, 358-398 (1988) · Zbl 0672.31008 · doi:10.2307/1971445
[2] Bahmann, H.; Gürlebeck, K.; Shapiro, M.; Sprössig, W., On a modified Teodorescu transform, Integral Transforms Spec. Funct., 12, 3, 213-226 (2001) · Zbl 1022.44003 · doi:10.1080/10652460108819346
[3] Brackx, F.; Delanghe, R.; Sommen, F., Clifford Analysis, Research Notes in Mathematics (1982), London: Pitman Books Ltd, London · Zbl 0529.30001
[4] Chen, L.; McNeal, JD, Product domains, multi-Cauchy transforms, and the \(\overline{\partial }\) equation, Adv. Math., 360 (2020) · Zbl 1439.32097 · doi:10.1016/j.aim.2019.106930
[5] Chen, L.; McNeal, JD, A solution operator for \(\overline{\partial }\) on the Hartogs triangle and \(L^p\) estimates, Math. Ann. (2018) · Zbl 1439.32098 · doi:10.1007/s00208-018-1778-5
[6] Delanghe, R., On the regular analytic functions with values in a Clifford algebra, Math. Ann., 185, 91-111 (1970) · Zbl 0176.37904 · doi:10.1007/BF01359699
[7] Delanghe, R., On the singularities of functions with values in a Clifford algebra, Math. Ann., 196, 293-319 (1972) · Zbl 0236.30050 · doi:10.1007/BF01428219
[8] Delanghe, R., Clifford analysis: history and perspective, Comput. Methods Funct. Theory, 1, 107-153 (2001) · Zbl 1011.30045 · doi:10.1007/BF03320981
[9] Dostanić, MR, The properties of the Cauchy transform on a bounded domain, J. Oper. Theory, 36, 233-247 (1996) · Zbl 0868.47024
[10] Dostanić, MR, Norm estimate of the Cauchy transform on \(L^p(\Omega )\), Integral Equ. Oper. Theory, 52, 4, 465-475 (2005) · Zbl 1091.42013 · doi:10.1007/s00020-002-1290-9
[11] Erik, D., Second order elliptic equations and Hodge-Dirac operators, J. Funct. Anal., 281 (2021) · Zbl 1479.35302 · doi:10.1016/j.jfa.2021.109267
[12] Fathi, S.; Truong, T.; Nguyen, M., A quaternionic approach to X-ray transform inversion in \(\mathbb{R}^3 \), J. Phys. A Math. Theor., 42 (2009) · Zbl 1188.44001 · doi:10.1088/1751-8113/42/41/415205
[13] Fathi, S., Inversion formula for the non-uniformly attenuated X-ray transform for emission imaging in \(\mathbb{R}^3 \), J. Phys. A Math. Theor., 43 (2010) · Zbl 1194.92046 · doi:10.1088/1751-8113/43/33/335202
[14] Fathi, S., Green function of the inhomogeneous Helmholtz equation with nonuniform refraction index, using quaternion analysis, J. Math. Phys., 51 (2010) · Zbl 1314.35068 · doi:10.1063/1.3524507
[15] Gürlebeck, K.; Sprössig, W., Quaternionic Analysis and Elliptic Boundary Value Problems (1990), Basel: Birkhäuser Verlag, Basel · Zbl 0850.35001 · doi:10.1007/978-3-0348-7295-9
[16] Gürlebeck, K.; Sprössig, W., Quaternionic and Clifford Calculus for Physicists and Engineers (1997), Chichester: Wiley, Chichester · Zbl 0897.30023
[17] Ha, V., Higher order Teodorescu operators in quaternionic analysis related to the Helmholtz operator, Math. Nachr., 280, 11, 1286-1281 (2007) · Zbl 1162.30030 · doi:10.1002/mana.200410552
[18] Hedberg, LI, On certain convolution inequalities, Proc. Am. Math. Soc., 36, 505-510 (1972) · Zbl 0283.26003 · doi:10.1090/S0002-9939-1972-0312232-4
[19] Kalaj, D., Cauchy transform and Poisson’s equation, Adv. Math., 231, 213-242 (2012) · Zbl 1290.30042 · doi:10.1016/j.aim.2012.05.003
[20] Lu, SZ; Ding, Y.; Yan, DY, Singular Integrals and Related Topics (2007), Singapore: World Scientific, Singapore · Zbl 1124.42011 · doi:10.1142/6428
[21] McIntosh, A.; Pryde, A., A functional calculus for several commuting operators, Indiana Univ. Math. J., 36, 2, 421-439 (1987) · Zbl 0694.47015 · doi:10.1512/iumj.1987.36.36024
[22] Stein, EM, Singular Integrals and Differentiability Properties of Functions (1970), Princeton: Princeton University Press, Princeton · Zbl 0207.13501
[23] Verdera, J., A weak type inequality for Cauchy transforms of finite measures, Publ. Mat., 36, 1092-1034 (1992) · Zbl 0776.30028 · doi:10.5565/PUBLMAT_362B92_19
[24] Zhang, Z., Some properties of operators in Clifford analysis, Complex Var. Ellipt. Equ., 52, 6, 455-473 (2007) · Zbl 1177.30072 · doi:10.1080/17476930701200666
[25] Zhang, Z., The Schwarz Lemma in Clifford analysis, Proc. Am. Math. Soc., 142, 4, 1237-1248 (2014) · Zbl 1295.30119 · doi:10.1090/S0002-9939-2014-11854-5
[26] Zhang, Z., The Schwarz lemma for functions with values in \(C(V_{n, 0})\), J. Math. Anal. Appl., 443, 1130-1141 (2016) · Zbl 1348.30033 · doi:10.1016/j.jmaa.2016.05.069
[27] Zhu, JF; Kalaj, D., Norm estimates of the Cauchy transform and related operators, J. Funct. Anal., 279 (2020) · Zbl 1446.42024 · doi:10.1016/j.jfa.2020.108726
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.