×

Standard multipartitions and a combinatorial affine Schur-Weyl duality. (English) Zbl 1523.20015

Summary: We introduce the notion of standard (Kleshchev) multipartitions and establish a one-to-one correspondence between standard multipartitions and irreducible representations with integral weights for the affine Hecke algebra of type \(A\) with a parameter \(q \in \mathbb{C}^{\times}\) which is not a root of unity. We then extend the correspondence to all Kleshchev multipartitions for Ariki-Koike algebras of integral type. By the affine Schur-Weyl duality, we further extend this to a correspondence between standard multipartitions and Drinfeld multipolynomials of integral type whose associated irreducible polynomial representations completely determine all irreducible polynomial representations for the quantum loop algebra \(\mathrm{U}_q (\widehat{\mathfrak{gl}}_n)\). We will see, in particular, the notion of standard multipartitions gives rise to a combinatorial description of the affine Schur-Weyl duality in terms of a column-reading vs. row-reading of residues of a multipartition.

MSC:

20C08 Hecke algebras and their representations
20C32 Representations of infinite symmetric groups
17B37 Quantum groups (quantized enveloping algebras) and related deformations
20B30 Symmetric groups
20G43 Schur and \(q\)-Schur algebras

References:

[1] Ariki, S., On the classification of simple modules for cyclotomic Hecke algebras of type \(G(m, 1, n)\) and Kleshchev multipartitions, Osaka J. Math., 38, 827-837 (2001) · Zbl 1005.20007
[2] Ariki, S.; Koike, K., A Hecke algebra of \(\mathbb{Z} / r \mathbb{Z} \wr \mathfrak{S}_n\) and the construction of its irreducible representations, Adv. Math., 106, 216-243 (1994) · Zbl 0840.20007
[3] Ariki, S.; Mathas, A., The number of simple modules of the Hecke algebras of type \(G(r, 1, n)\), Math. Z., 233, 601-623 (2000) · Zbl 0955.20003
[4] Broué, M.; Malle, G., Zyklotomische Heckealgebren, Astérisque, 212, 119-189 (1993) · Zbl 0835.20064
[5] Brundan, J.; Kleshchev, A., Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math., 178, 451-484 (2009) · Zbl 1201.20004
[6] Brundan, J.; Kleshchev, A., The degenerate analogue of Ariki’s categorification theorem, Math. Z., 266, 877-919 (2010) · Zbl 1287.17022
[7] Chari, V.; Pressley, A., Quantum affine algebras and affine Hecke algebras, Pac. J. Math., 174, 295-326 (1996) · Zbl 0881.17011
[8] Deng, B.; Du, J., Identification of simple representations for affine q-Schur algebras, J. Algebra, 373, 249-275 (2013) · Zbl 1337.17013
[9] Deng, B.; Du, J.; Fu, Q., A Double Hall Algebra Approach to Affine Quantum Schur-Weyl Theory, LMS Lect. Note Ser., vol. 401 (2012), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1269.20045
[10] Dipper, R.; James, G., Representations of Hecke algebras of general linear groups, Proc. Lond. Math. Soc., 52, 20-52 (1986) · Zbl 0587.20007
[11] Dipper, R.; James, G., Blocks and idempotents of Hecke algebras of general linear groups, Proc. Lond. Math. Soc., 54, 57-82 (1987) · Zbl 0615.20009
[12] Dipper, R.; James, G.; Mathas, A., Cyclotomic q-Schur algebras, Math. Z., 229, 385-416 (1998) · Zbl 0934.20014
[13] Du, J.; Fu, Q., Small representations for affine q-Schur algebras, Algebr. Represent. Theory, 19, 355-376 (2016) · Zbl 1403.20059
[14] Du, J.; Rui, H., Ariki-Koike algebras with semisimple bottoms, Math. Z., 234, 807-830 (2000) · Zbl 0955.20004
[15] Du, J.; Rui, H., Specht modules for Ariki-Koike algebras, Commun. Algebra, 29, 4701-4719 (2001) · Zbl 1012.20004
[16] Frenkel, E.; Mukhin, E., The Hopf algebra \(\operatorname{Rep} U_q( \hat{\mathfrak{gl}}_\infty)\), Sel. Math. New Ser., 8, 537-635 (2002) · Zbl 1034.17009
[17] Fu, Q., Affine quantum Schur algebras and affine Hecke algebras, Pac. J. Math., 270, 351-366 (2014) · Zbl 1367.20057
[18] Graham, J.; Lehrer, G., Cellular algebras, Invent. Math., 126, 1-34 (1996) · Zbl 0853.20029
[19] Grojnowski, I., Affine \(\mathfrak{sl}_p\) controls the representation theory of the symmetric group and related Hecke algebras (1999), 45 pages
[20] Hernandez, D.; Leclerc, B., Cluster algebras and quantum affine algebras, Duke Math. J., 154, 265-341 (2010) · Zbl 1284.17010
[21] Kleshchev, A., Linear and Projective Representations of Symmetric Groups (2005), Cambridge University Press · Zbl 1080.20011
[22] Macdonald, I. G., Symmetric Functions and Hall Polynomials (1995), Clarendon Press: Clarendon Press Oxford · Zbl 0899.05068
[23] Roichman, Y., Induction and restriction of Kazhdan-Lusztig cells, Adv. Math., 134, 384-398 (1998) · Zbl 0909.20028
[24] Rogawski, J., On modules over the Hecke algebra of a p-adic group, Invent. Math., 79, 443-465 (1985) · Zbl 0579.20037
[25] Rogawski, J., Representations of \(G L(n)\) over a p-adic field with an fixed vector, Isr. J. Math., 54, 242-256 (1986) · Zbl 0602.20038
[26] Varagnolo, M.; Vasserot, E., On the decomposition matrices of the quantized Schur algebra, Duke Math. J., 100, 267-297 (1999) · Zbl 0962.17006
[27] Vazirani, M., Parameterizing Hecke algebra modules: Bernstein-Zelevinsky multisegments, Kleshchev multipartitions, and crystal graphs, Transform. Groups, 7, 267-303 (2002) · Zbl 1061.20007
[28] Zelevinsky, A., Induced representations of reductive p-adic groups, II. On irreducible representations of \(G L(n)\), Ann. Sci. Éc. Norm. Supér., 13, 165-210 (1980) · Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.