×

Almost elusive permutation groups. (English) Zbl 1523.20004

A finite permutation group having no derangements, that is no fixed-point-free elements, of prime order is said to be elusive. The study and construction of elusive groups was initiated by P. J. Cameron et al. [J. Lond. Math. Soc., II. Ser. 66, No. 2, 325–333 (2002; Zbl 1015.20001)] in 2002. Extending this notion, we say that a finite permutation group \(G\) is almost elusive if it contains a unique conjugacy class of derangements of prime order. In this paper, it is shown that every quasiprimitive almost elusive group is either almost simple or \(2\)-transitive of affine type. Moreover, the authors classify all the almost elusive groups that are almost simple and primitive with socle an alternating group, a sporadic group or a rank one group of Lie type.

MSC:

20B10 Characterization theorems for permutation groups
20B15 Primitive groups

Citations:

Zbl 1015.20001

References:

[1] Bennett, M. A.; Levin, A., The Nagell-Ljunggren equation via Runge’s method, Monatshefte Math., 177, 15-31 (2015) · Zbl 1395.11060
[2] Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system I: the user language, J. Symb. Comput., 24, 235-265 (1997) · Zbl 0898.68039
[3] Bray, J. N.; Holt, D. F.; Roney-Dougal, C. M., The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, LMS Lecture Note Series, vol. 407 (2013), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1303.20053
[4] Breuer, T., Manual for the GAP Character Table Library, Version 1.1 (2004), RWTH Aachen
[5] Burness, T. C.; Giudici, M., Locally elusive classical groups, Isr. J. Math., 225, 343-402 (2018) · Zbl 1494.20003
[6] Burness, T. C.; Giudici, M., Classical Groups, Derangements and Primes, Aust. Math. Soc. Lecture Series, vol. 25 (2016), Cambridge University Press · Zbl 1372.11001
[7] Burness, T. C.; Giudici, M.; Wilson, R. A., Prime order derangements in primitive permutation groups, J. Algebra, 341, 158-178 (2011) · Zbl 1248.20004
[8] Burness, T. C.; Tong-Viet, H. P., Derangements in primitive permutation groups, with an application to character theory, Q. J. Math., 66, 63-96 (2015) · Zbl 1335.20001
[9] Burness, T. C.; Tong-Viet, H. P., Primitive permutation groups and derangements of prime power order, Manuscr. Math., 105, 255-291 (2016) · Zbl 1345.20002
[10] Cameron, P. J., Research Problems from the Fifteenth British Combinatorial Conference. Research Problems from the Fifteenth British Combinatorial Conference, Stirling, 1995. Research Problems from the Fifteenth British Combinatorial Conference. Research Problems from the Fifteenth British Combinatorial Conference, Stirling, 1995, Discrete Math., 167/168, 605-615 (1997) · Zbl 0870.05075
[11] Cameron, P. J.; Giudici, M.; Jones, G. A.; Kantor, W. M.; Klin, M. H.; Marušič, D.; Nowitz, L. A., Transitive permutation groups without semiregular subgroups, J. Lond. Math. Soc., 66, 325-333 (2002) · Zbl 1015.20001
[12] Dickson, L. E., Linear Groups, with an Exposition of the Galois Field Theory (1901), Teubner: Teubner Leipzig, (Dover reprint 1958) · JFM 32.0128.01
[13] Ecklund, E. F.; Eggleton, R. B., Prime factors of consecutive integers, Am. Math. Mon., 79, 1082-1089 (1972) · Zbl 0264.10032
[14] Ecklund, E. F.; Eggleton, R. B.; Erdős, P.; Selfridge, J. L., On the prime factorization of binomial coefficients, J. Aust. Math. Soc., 26, 257-269 (1978) · Zbl 0393.10005
[15] Fein, B.; Kantor, W. M.; Schacher, M., Relative Brauer groups II, J. Reine Angew. Math., 328, 39-57 (1981) · Zbl 0457.13004
[16] Fulman, J.; Guralnick, R. M., Derangements in finite classical groups for actions related to extension field and imprimitive subgroups and the solution of the Boston-Shalev conjecture, Trans. Am. Math. Soc., 370, 4601-4622 (2018) · Zbl 1494.20076
[17] Fulman, J.; Guralnick, R. M., Derangements in subspace actions of finite classical groups, Trans. Am. Math. Soc., 369, 2521-2572 (2017) · Zbl 1431.20033
[18] Fulman, J.; Guralnick, R. M., Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements, Trans. Am. Math. Soc., 364, 3023-3070 (2012) · Zbl 1256.20048
[19] Fulman, J.; Guralnick, R. M., Derangements in simple and primitive groups, (Groups, Combinatorics & Geometry. Groups, Combinatorics & Geometry, Durham, 2001 (2003), World Sci. Publ.: World Sci. Publ. River Edge, NJ), 99-121 · Zbl 1036.20002
[20] Giudici, M., New constructions of groups without semiregular subgroups, Commun. Algebra, 35, 2719-2730 (2007) · Zbl 1155.20001
[21] Giudici, M., Quasiprimitive groups with no fixed point free elements of prime order, J. Lond. Math. Soc., 67, 73-84 (2003) · Zbl 1050.20002
[22] Giudici, M.; Kelly, S., Characterizing a family of elusive permutation groups, J. Group Theory, 12, 95-105 (2009) · Zbl 1189.20004
[23] Giudici, M.; Morgan, L.; Potočnik, P.; Verret, G., Elusive groups of automorphisms of digraphs of small valency, Eur. J. Comb., 46, 1-9 (2015) · Zbl 1307.05083
[24] Gorenstein, D.; Lyons, R.; Solomon, R., The Classification of the Finite Simple Groups, Number 3, Mathematical Surveys and Monographs, vol. 40 (1998), Amer. Math. Soc. · Zbl 0890.20012
[25] Guralnick, R. M., Conjugacy classes of derangements in finite transitive groups, Proc. Steklov Inst. Math., 292, 112-117 (2016) · Zbl 1353.20001
[26] Guralnick, R. M., Subgroups of prime power index in a simple group, J. Algebra, 81, 304-311 (1983) · Zbl 0515.20011
[27] Hall, E. V., Almost elusive classical groups (2021), submitted for publication
[28] E.V. Hall, The classification of the almost elusive quasiprimitive groups, in preparation.
[29] Jordan, C., Sur la limite de transitivité des groupes non alternés, Bull. Soc. Math. Fr., 1, 40-71 (1872/1873) · JFM 07.0073.02
[30] Jordan, C., Recherches sur les substitutions, J. Math. Pures Appl. (Liouville), 17, 351-367 (1872) · JFM 04.0055.01
[31] Kleidman, P. B., The maximal subgroups of the Chevalley groups \(G_2(q)\) with q odd, the Ree groups \({}^2G_2(q)\), and their automorphism groups, J. Algebra, 117, 30-71 (1988) · Zbl 0651.20020
[32] Kleidman, P. B.; Liebeck, M. W., The Subgroup Structure of the Finite Classical Groups, LMS Lecture Note Series, vol. 129 (1990), Cambridge University Press · Zbl 0697.20004
[33] Liebeck, M. W.; Seitz, G. M., Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras, Mathematical Surveys and Monographs, vol. 180 (2012), Amer. Math. Soc. · Zbl 1251.20001
[34] Manning, W. A., The primitive groups of class 2p which contain a substitution of order p and degree 2p, Trans. Am. Math. Soc., 4, 351-357 (1903) · JFM 34.0178.01
[35] Marušič, D., On vertex symmetric digraphs, Discrete Math., 36, 69-81 (1981) · Zbl 0459.05041
[36] Nagell, T., Des équations indéterminées \(x^2 + x + 1 = y^n\) et \(x^2 + x + 1 = 3 y^n\), Nordsk. Mat. Forenings Skr., 2, 12-14 (1920) · JFM 48.0138.01
[37] Praeger, C. E., An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. Lond. Math. Soc., 47, 227-239 (1993) · Zbl 0738.05046
[38] Ramanujan, S., A proof of Bertrand’s postulate, J. Indian Math. Soc., XI, 181-182 (1919)
[39] Serre, J.-P., On a theorem of Jordan, Bull. Am. Math. Soc., 40, 429-440 (2003) · Zbl 1047.11045
[40] Suzuki, M., On a class of doubly transitive groups, Ann. Math., 75, 105-145 (1962) · Zbl 0106.24702
[41] Wilson, R. A., Maximal subgroups of sporadic groups, (Finite Simple Groups: Thirty Years of the Atlas and Beyond. Finite Simple Groups: Thirty Years of the Atlas and Beyond, Contemp. Math., vol. 694 (2017), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 57-72 · Zbl 1448.20018
[42] Wilson, R. A., The Finite Simple Groups, Graduate Texts in Math., vol. 251 (2009), Springer-Verlag: Springer-Verlag London · Zbl 1203.20012
[43] Wilson, R. A., A World-Wide-Web Atlas of finite group representations
[44] Xu, J., On elusive permutation groups of square-free degree, Commun. Algebra, 37, 3200-3206 (2009) · Zbl 1192.20002
[45] Zsigmondy, K., Zur Theorie der Potenzreste, Monatshefte Math. Phys., 3, 265-284 (1892) · JFM 24.0176.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.