×

Deriving dualities in pointfree topology from Priestley duality. (English) Zbl 1523.18010

In pointfree topology there is a well-known dual adjunction between the category \(\mathsf{Top}\)of topological spaces and continuous maps and the category \(\mathsf{Frm}\)of frames and frame homomorphisms, restricting to a dual equivalence between the category \(\mathsf{Sob}\)of sober spaces and the category \(\mathsf{SFrm}\)of spacial frames. Further restrictions yield the following classical results.
Hofmann-Lawson duality between the category \(\mathsf{ConFrm}\)of continuous frames and proper frame homomorphisms and the category \(\mathsf{LKSob}\)of locally compact spaces and proper maps [K. H. Hofmann and J. D. Lawson, Trans. Am. Math. Soc. 246, 285–310 (1978; Zbl 0402.54043)].
A dual equivalence between the full subcategory \(\mathsf{StCFrm}\)of \(\mathsf{ConFrm}\)consisting of stably continuous frames and the full subcategory \(\mathsf{StLKSp}\)of \(\mathsf{LKSob}\)consisting of stably locally compact spaces, which further restricts to a dual equivalence between the full subcategory \(\mathsf{StKFrm}\)of stably compact frames and \(\mathsf{StKSp}\)of stably compact spaces [B. Banaschewski, Lect. Notes Math. 871, 1–11 (1981; Zbl 0461.06010); G. Gierz and K. Keimel, Houston J. Math. 3, 207–224 (1977; Zbl 0359.06015); P. T. Johnstone, J. Pure Appl. Algebra 22, 229–247 (1981; Zbl 0445.18005); H. Simmons, Topology Appl. 13, 201–223 (1982; Zbl 0484.18005)].
Isbell duality between the full subcategory \(\mathsf{KRFrm}\)of \(\mathsf{Frm}\)consisting of compact regular frames and the full subcategory \(\mathsf{KHaus}\)of \(\mathsf{Top}\)consisting of compact Hausdorff spaces [J. R. Isbell, Math. Scand. 31, 5–32 (1972; Zbl 0246.54028)].

This paper aims to provide a different perspective on these dualities by utilizing Priestley duality [H. A. Priestley, Bull. Lond. Math. Soc. 2, 186–190 (1970; Zbl 0201.01802); Proc. Lond. Math. Soc. (3) 24, 507–530 (1972; Zbl 0323.06011)], which establishes a dual equivalence between the category \(\mathsf{DLat}\)of bounded distributive lattices and bounded lattice homomorphisms and \(\mathsf{Pries}\)of Priedtley spaces and Priestley morphisms.
The synopsis of the paper goes as follows.
§ 2
introduces the categories of frames and spaces of interest, presenting the relevant dualities.
§ 3
addresses Priestley duality and its restriction to frames.
§ 4
characterizes spacial frames in the language of Priestley duality, connecting the associated Priestley spaces with sober spaces.
§ 5
further restricts this correspondence to continuous frames, their associated Priestley spsces, and locally compact sober spaces.
§ 6
derives the duality between stably continuous frames and stably locally compact spaces by describing stability in the language of Priestley spaces. This gives a new proof of the duality between stably compact frames and stably compact spaces.
§ 7
describes regularity in the language of Priestley spaces, providing an alternative proof of Isbell duality.

MSC:

18F70 Frames and locales, pointfree topology, Stone duality
06D22 Frames, locales
06D50 Lattices and duality
06E15 Stone spaces (Boolean spaces) and related structures
54D30 Compactness
54D45 Local compactness, \(\sigma\)-compactness

References:

[1] Alechina, N., Mendler, M., de Paiva, V., Ritter, E.: Categorical and Kripke semantics for constructive S4 modal logic. In: Computer Science Logic (Paris, 2001), Volume 2142 of Lecture Notes in Computer Science, pp. 292-307. Springer, Berlin (2001) · Zbl 1005.03024
[2] Artemov, S.; Protopopescu, T., Intuitionistic epistemic logic, Rev. Symb. Log., 9, 2, 266-298 (2016) · Zbl 1408.03004 · doi:10.1017/S1755020315000374
[3] Ávila, F.; Bezhanishvili, G.; Morandi, PJ; Zaldívar, A., When is the frame of nuclei spatial: a new approach, J. Pure Appl. Algebra, 224, 7, 20 (2020) · Zbl 1444.06007 · doi:10.1016/j.jpaa.2019.106302
[4] Ávila, F.; Bezhanishvili, G.; Morandi, PJ; Zaldívar, A., The frame of nuclei on an Alexandroff space, Order, 38, 1, 67-78 (2021) · Zbl 1485.06007 · doi:10.1007/s11083-020-09528-1
[5] Banaschewski, B.: Coherent frames. In: Proceedings of the Conference on Topological and Categorical Aspects of Continuous Lattices, Lecture Notes in Mathematics, vol. 871, pp. 1-11. Springer, Berlin (1981) · Zbl 0461.06010
[6] Banaschewski, B.; Mulvey, CJ, Stone-Čech compactification of locales. I, Houston J. Math., 6, 3, 301-312 (1980) · Zbl 0473.54026
[7] Bezhanishvili, G.; Bezhanishvili, N., Profinite Heyting algebras, Order, 25, 3, 211-227 (2008) · Zbl 1155.06007 · doi:10.1007/s11083-008-9089-1
[8] Bezhanishvili, G.; Gabelaia, D.; Jibladze, M., Funayama’s theorem revisited, Algebra Universalis, 70, 3, 271-286 (2013) · Zbl 1285.06004 · doi:10.1007/s00012-013-0247-y
[9] Bezhanishvili, G., Gabelaia, D., Jibladze, M.: Spectra of compact regular frames. Theory Appl. Categ. 31 (Paper No. 12), 365-383 (2016) · Zbl 1352.06009
[10] Bezhanishvili, G.; Ghilardi, S., An algebraic approach to subframe logics. Intuitionistic case, Ann. Pure Appl. Logic, 147, 1-2, 84-100 (2007) · Zbl 1123.03055 · doi:10.1016/j.apal.2007.04.001
[11] Bezhanishvili, G.; Holliday, WH, A semantic hierarchy for intuitionistic logic, Indag. Math. (N.S.), 30, 3, 403-469 (2019) · Zbl 1539.03032 · doi:10.1016/j.indag.2019.01.001
[12] Bezhanishvili, G.; Melzer, S., Hofmann-Mislove through the lenses of Priestley, Semigroup Forum, 105, 3, 825-833 (2022) · Zbl 07622243 · doi:10.1007/s00233-022-10311-4
[13] Cornish, WH, On H. Priestley’s dual of the category of bounded distributive lattices, Mat. Vesnik, 12(27), 4, 329-332 (1975) · Zbl 0344.06007
[14] Dickmann, M.; Schwartz, N.; Tressl, M., Spectral Spaces. New Mathematical Monographs (2019), Cambridge: Cambridge University Press, Cambridge · Zbl 1455.54001 · doi:10.1017/9781316543870
[15] Dowker, CH; Papert, D., Quotient frames and subspaces, Proc. Lond. Math. Soc., 3, 16, 275-296 (1966) · Zbl 0136.43405 · doi:10.1112/plms/s3-16.1.275
[16] Engelking, R.: General Topology, Volume 6 of Sigma Series in Pure Mathematics, 2nd edn. Heldermann Verlag, Translated from the Polish by the author, Berlin (1989) · Zbl 0684.54001
[17] Esakia, LL, Topological Kripke models, Soviet Math. Dokl., 15, 147-151 (1974) · Zbl 0296.02030
[18] Esakia, L.L.: Heyting algebras, Volume 5 of Trends in Logic—Studia Logica Library. Translated from the Russian by A. Evseev. Edited by G. Bezhanishvili and W. H. Holliday. Springer, Cham (2019) · Zbl 1436.06001
[19] Fairtlough, M., Mendler, M.: An intuitionistic modal logic with applications to the formal verification of hardware. In: Computer Science Logic (Kazimierz, 1994), Volume 933 of Lecture Notes in Computer Science, pp. 354-368. Springer, Berlin (1995) · Zbl 1044.03514
[20] Fairtlough, M.; Mendler, M., Propositional lax logic, Inform. Comput., 137, 1, 1-33 (1997) · Zbl 0889.03015 · doi:10.1006/inco.1997.2627
[21] Garg, D., Abadi, M.: A modal deconstruction of access control logics. In: Foundations of Software Science and Computational Structures, Volume 4962 of Lecture Notes in Computer Science, pp. 216-230. Springer, Berlin (2008) · Zbl 1138.03318
[22] Gierz, G.; Hofmann, KH; Keimel, K.; Lawson, JD; Mislove, M.; Scott, DS, Continuous Lattices and Domains. Encyclopedia of Mathematics and Its Applications (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1088.06001 · doi:10.1017/CBO9780511542725
[23] Gierz, G.; Keimel, K., A lemma on primes appearing in algebra and analysis, Houston J. Math., 3, 2, 207-224 (1977) · Zbl 0359.06015
[24] Goldblatt, RI, Grothendieck topology as geometric modality, Z. Math. Logik Grundlagen Math., 27, 6, 495-529 (1981) · Zbl 0474.03018 · doi:10.1002/malq.19810273104
[25] Goldblatt, RI, Cover semantics for quantified lax logic, J. Logic Comput., 21, 6, 1035-1063 (2011) · Zbl 1247.03028 · doi:10.1093/logcom/exq029
[26] Hofmann, KH; Lawson, JD, The spectral theory of distributive continuous lattices, Trans. Am. Math. Soc., 246, 285-310 (1978) · Zbl 0402.54043 · doi:10.1090/S0002-9947-1978-0515540-7
[27] Hofmann, K.H., Mislove, M.W.: Local compactness and continuous lattices. In: Continuous Lattices, pp. 209-248. Springer (1981) · Zbl 0464.06005
[28] Isbell, JR, Atomless parts of spaces, Math. Scand., 31, 5-32 (1972) · Zbl 0246.54028 · doi:10.7146/math.scand.a-11409
[29] Johnstone, PT, The Gleason cover of a topos. II, J. Pure Appl. Algebra, 22, 3, 229-247 (1981) · Zbl 0445.18005 · doi:10.1016/0022-4049(81)90100-6
[30] Johnstone, PT, Stone Spaces. Cambridge Studies in Advanced Mathematics (1982), Cambridge: Cambridge University Press, Cambridge · Zbl 0499.54001
[31] Mac Lane, S., Categories for the Working Mathematician, Volume 5 of Graduate Texts in Mathematics (1998), New York: Springer, New York · Zbl 0906.18001
[32] Picado, J.; Pultr, A., Frames and Locales. Frontiers in Mathematics (2012), Basel: Birkhäuser, Basel · Zbl 1231.06018 · doi:10.1007/978-3-0348-0154-6
[33] Priestley, HA, Representation of distributive lattices by means of ordered Stone spaces, Bull. Lond. Math. Soc., 2, 186-190 (1970) · Zbl 0201.01802 · doi:10.1112/blms/2.2.186
[34] Priestley, HA, Ordered topological spaces and the representation of distributive lattices, Proc. Lond. Math. Soc., 3, 24, 507-530 (1972) · Zbl 0323.06011 · doi:10.1112/plms/s3-24.3.507
[35] Priestley, H.A.: Ordered sets and duality for distributive lattices. In: Orders: Description and Roles (L’Arbresle, 1982), Volume 99 of North-Holland Mathematical Studies, pp. 39-60. North-Holland, Amsterdam (1984) · Zbl 0557.06007
[36] Pultr, A.; Sichler, J., Frames in Priestley’s duality, Cahiers Topol. Géom. Différ. Catég., 29, 3, 193-202 (1988) · Zbl 0666.54018
[37] Pultr, A.; Sichler, J., A Priestley view of spatialization of frames, Cahiers Topol. Géom. Différ. Catég., 41, 3, 225-238 (2000) · Zbl 0970.06006
[38] Schwartz, N., Locales as spectral spaces, Algebra Universalis, 70, 1, 1-42 (2013) · Zbl 1288.06020 · doi:10.1007/s00012-013-0241-4
[39] Simmons, H., A couple of triples, Topol. Appl., 13, 2, 201-223 (1982) · Zbl 0484.18005 · doi:10.1016/0166-8641(82)90021-9
[40] Vickers, S., Topology via Logic. Cambridge Tracts in Theoretical Computer Science (1989), Cambridge: Cambridge University Press, Cambridge · Zbl 0668.54001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.