×

Evaluation modules for quantum toroidal \(\mathfrak{gl}_n\) algebras. (English) Zbl 1523.17029

Greenstein, Jacob (ed.) et al., Interactions of quantum affine algebras with cluster algebras, current algebras and categorification. In honor of Vyjayanthi Chari on the occasion of her 60th birthday. Based on the summer school and the conference, Washington, DC, USA, June 2018. Cham: Birkhäuser. Prog. Math. 337, 393-425 (2021).
Summary: The affine evaluation map is a surjective homomorphism from the quantum toroidal \(\mathfrak{gl}_n\) algebra \({\mathcal E}^{\prime}_n(q_1,q_2,q_3)\) to the quantum affine algebra \(U^{\prime}_q\widehat{\mathfrak{gl}}_n\) at level \(\kappa\) completed with respect to the homogeneous grading, where \(q_2 = q^2\) and \(q_3^n=\kappa^2\). We discuss \({\mathcal E}^{\prime}_n(q_1,q_2,q_3)\) evaluation modules. We give highest weights of evaluation highest weight modules. We also obtain the decomposition of the evaluation Wakimoto module with respect to a Gelfand-Zeitlin-type subalgebra of a completion of \({\mathcal E}^{\prime}_n(q_1,q_2,q_3)\), which describes a deformation of the coset theory \(\widehat{\mathfrak{gl}}_n/\widehat{\mathfrak{gl}}_{n-1}\) .
For the entire collection see [Zbl 1481.17001].

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations

References:

[1] M. Bershtein, B. Feigin, and G. Merzon, Plane partitions with a “pit”: generating functions and representation theory, Selecta Math. (N.S.) 24 (2018), no. 1, 21-62 · Zbl 1430.17044
[2] B. Feigin, E. Feigin, M. Jimbo, T. Miwa, and E. Mukhin,Quantum continuous \(\mathfrak{gl}_{\infty } \) : Semi-infinite construction of representations, Kyoto J. Math 51 (2011), no. 2, 337-364 · Zbl 1278.17012
[3] B. Feigin, M. Jimbo, and E. Mukhin, Towards trigonometric deformation of \(\mathfrak{sl}_2\) coset VOA, arXiv:1811.02056, 1-20 · Zbl 1416.81093
[4] B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Branching rules for quantum toroidal \(\mathfrak{gl}_N\) , Adv. Math. 300 (2016), 229-274 · Zbl 1402.17031
[5] B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Representations of quantum toroidal \(\mathfrak{gl}_N\) , J. Algebra 380 (2013), 78-108 · Zbl 1293.17017
[6] M. Jimbo, Aq-analogue of \(U(\mathfrak{gl}_{N+1})\) , Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247-252 · Zbl 0602.17005
[7] Jimbo, M., Quantum R matrix related to the generalized Toda system: an algebraic approach, Lecture Notes in Physics, 246, 335-361 (1986) · doi:10.1007/3-540-16452-9_21
[8] K. Miki, Toroidal braid group action and an automorphism of toroidal algebra \(U_q\big (\mathfrak{sl}_{n+1,tor}\big )\) (n ≥ 2), Lett. Math. Phys. 47 (1999), no.4, 365-378 · Zbl 1022.17009
[9] K. Miki, Toroidal and level \(0\ U_q^{\prime }\widehat{sl_{n+1}}\) actions on \(U_q\widehat{gl_{n+1}}\) modules, J. Math. Phys., 40 (1999), no. 6, 3191-3210 · Zbl 0959.17016
[10] Mukhin, E.; Young, C., Affinization of category \(\mathcal{O}\) for quantum groups, Trans. Amer. Math. Soc., 366, 9, 4815-4847 (2014) · Zbl 1306.17005 · doi:10.1090/S0002-9947-2014-06039-X
[11] A. Negut, Quantum toroidal and shuffle algebras, arXiv:1302.6202 · Zbl 1460.17023
[12] M. Nazarov and V. Tarasov, Yangians and Gelfand-Zetlin bases, Publ. RIMS, Kyoto Univ. 30 (1994) 459-478 · Zbl 0929.17009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.